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1. Introduction

1.1. Motivation

In the d-dimensional arrangement problem, d-dimAP(see Definition 3.1.6), we search
for an embedding of a given undirected graph G with minimal edge length into the
d-dimensional lattice. This problem can be motivated by VLSI placement and chip
design where we have to embed many circuits and minimize wires between them. It
also appears in other fields like the research of breast cancer [27]. Variants of this
problem have weighted edges, different domains, different metrics and blockages or even
terminals. There are many variants of this problem, we could consider hyperedges,
bounded domains or different distance functions.

Figure 1.1.: Example of optimal embedding of a graph into a 4× 3 grid.

1.2. Previous work

Even the one-dimensional arrangement problem is NP-complete which was shown by
Even and Shiloah in 1975 [10]. In 1989 Hansen first showed an O(log2(|V |)) approxima-
tion to the unbounded d-dimAP[13], by using the divide and conquer scheme with 1/10-
9/10 seperators from Leighton and Rao [19]. In 2009, Arora, Rao and Vazirani improved
these seperators which leads to a bound ofO(log3/2 |V |) for Hansens algorithm [3]. Even,
Naor, Rao and Schieber showed an O(log |V | · log log |V |)-approximation to the d-linear
arrangement problem d-LAP in 2000. In 2007 Charikar, Makarychev and Makarychev
presented a Divide and Conquer algorithm for d-LAP with an approximation bound
of O(

√
log |V |) and claimed that this implies the same approximation bound for d-

dimAP with Hilbert space-filling curves [9]. As Rotter and Vygen pointed out in 2013,
they lose a factor of O(log |V |) [26]. In the same paper, by combining the algorithm of [9]
and [11], Vygen and Rotter attain an O(log |V |) approximation to the cube-bounded and
unbounded d-dimAP. In 2013, this result was generalized to hypergraphs by Ahrens [1].
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1. Introduction

He also gave a new approach for a derandomization of the algorithm by pessimistic
estimators, but his cunstruction contains an error. In 2014, Gupta and Sidiropoulus
considered the cube bounded and unbounded d-dimAP with fixed points [12]. They got
an approximation of O( d

√
| T | · log |V |) for the unbounded and O(| T | · log | T | · log |V |)

for the cube bounded case. Brenner, Rotter and Schorr discovered in 2014 that [26] can
be applied with some adjustments on rectangles as well [5] attaining the same asymptotic
bounds as Rotter and Vygen.

In 2012, Oswald, Reinelt and Wiesberg developed an exact branch-and-cut scheme for
the bounded 2-dimAP which is applicable to small graphs of about thirty vertices in
reasonable runtime [23].

1.3. Our approach

In this thesis we are mainly interested in the cuboid-bounded case of the d-dimensional
arrangement problem. This means, that we want to embed a hypergraph into a d-
dimenional lattice which is bounded by a cuboid, minimizing the weighted edge lengths.
We build on the algorithms of [26], [5], [11] and [1].

The algorithm presented and tested in this thesis works as follows: First a so-called
spreading LP is solved. This LP is a lower bound to the embedding problem and provides
a graph metric which is used to build a tree metric. This tree is then transformed into
a linear embedding. In the last step, a Hilbert space-filling curve is used to rearrange the
linear embedding into a cuboid of arbitrary dimension and size.

The algorithm results in a bound of O(log |V |) for the unbounded and the cuboid
bounded case of d-dimAP. Given blockages it results in a bound of O( d

√
| B | · log |V |)

for the cube bounded case of d-dimAP. Both bounds are an improvement to the cur-
rently known bounds. We have generalized the bound O(log |V |) from cubes [26] and
rectangles [5] to cuboids and for cubes with blockages we changed the approximation
bound from O(| B | · log | B | · log |V |) of [12] to O( d

√
| B | · log |V |). Furthermore, by

correcting the construction of the tree metric in [1] we show that this algorithm can be
implemented without randomness.
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1.3. Our approach

Algorithm 1: d-Dimensional embedding Algorithm
input : Hypergraph G = (V,H)

Cuboid boundaries b1, . . . ,bd ∈ N

Blockages B ⊆
d

×
i=1

[bi]

output: Injection π : V→
d

×
i=1

[bi] \ B

1 foreach Connected component do
2 Precalculate LP-lower bounds
3 while Violated LP inequality exists do
4 Add one or more violated inequalities
5 Resolve spreading-LP
6 Post-optimize solution
7 end
8 Generate tree metric
9 Optimize tree

10 Create linear embedding
11 end
12 Use Hilbert space-filling curve to transform linear into cuboid embedding

In Chapter 2 we introduce basic notations and definitions which we are using in this
thesis, followed by the main problems in Chapter 3.

In Chapter 4, we introduces the spreading LP, first mentioned in [9]. We will show
how to adjust the spreading bound to the case of cuboids and mention some cru-
cial optimizations to run the spreading LP at least for small instances in reasonable
runtime.

Tree metrics - and how they are built - are the topic of Chapter 5. We combine
the proofs of [11] and [1] to get a bound with the same constant as in [11] for hy-
pergraphs. We then introduce two derandomizations. We generalize the one of [11]
to hypergraphs and the one of [1]. For both we add details about the implementa-
tion.

In Chapter 6, we introduce the Hilbert space-filling curve. We show a possible gener-
alization to cuboids. Then we prove a general bound for the infinite space and show a
geometric bound for the case of cuboids.

In Chapter 7, we prove our two main theorems, the approximation bounds of our al-
gorithm, first the one for the cube-bounded and unbounded MLA with blockages and
then for the cuboid bounded MLA without blockages.

In Chapter 8, we give some test results of the program and compare the different al-
gorithms. We show that there is no clear winner of the two presented LP-formulations
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1. Introduction

and a useful selection depends on the graph. Furthermore, we show that our optimiza-
tions indeed result in lower calculation times. Moreover, we compare the results of the
different tree metric algorithms on different graphs.

In Appendix A.1, we describe the program which was written for this thesis. We will
describe the usage and the most important parameters.

Our main result is the generalization of an approximation bound of O(log |V |) to the
embedding of hypergraphs in cuboids. This generalizes the results of [26], [5] and
[1] by one deterministic algorithm. We correct the ideas of [1] for a derandomiza-
tion. Furthermore, we show, that in the presence of blockages this algorithm only
gets worse by a factor of O( d

√
| B |) if we are embedding into a cube of arbitrary dimen-

sion.

1.4. Acknowledgement
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2. Definitions and notation

In this chapter we introduce the basic definitions and notations we use in this thesis.

2.1. Notation

We will use the following conventions:

• N are the positive natural numbers

• R+ for the non-negative and R>0 for the positive real numbers

• ⊂ for strict subset, whereas ⊆ is not necessarily strict

Definition 2.1.1 (Index set). We will name the index set {1, . . . , n} by [n] for every
n ∈ N.

Definition 2.1.2 (Symmetric group). For an arbitrary finite set S we call an injective
function π : [|S|]→ S a permutation of S. We denote the set of all permutations of S
by S(S), also called the symmetric group. Furthermore, given a number k ∈ [|S|] we
call an injection π : [k]→ S a partial permutation of S.

Definition 2.1.3 (Binomialcoefficient). Let S be an arbitrary finite set and n ∈ {0, . . . , |S|},
then we identify (

S

n

)
:= {T ⊆ S : |T | = n}

2.2. Definitions

Definition 2.2.1 (Hypergraph). A hypergraph is a generalization of a graph in which
edges can have more then two endpoints. In this thesis we will not consider parallel
edges, hence we define a hypergraph as a tuple G = (V,H), where V is an arbitrary
finite set, and H ⊆ P(V) subset of the powerset of V. V is called the set of vertices and
H the set of hyperedges. If we have an conventional graph we will indicate the edges
with E.

Definition 2.2.2 (Complete). A graph G = (V,E) is called complete if E =
(V

2
)
.
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2. Definitions and notation

Definition 2.2.3 (Adjacent edges). Let G = (V,H) be a hypergraph. For a vertex
v ∈ V we call the edges h ∈ H with v ∈ h adjacent to v. We denote them by

δ(v) := {h ∈ H |v ∈ h}

Definition 2.2.4 (Cut). A cut is defined as a set of vertices ∅ ⊂ S ⊂ V. The cut edges
are defined as a function C : P(V)→ P(H):

C(S) := {h ∈ H : h ∩ S 6= ∅ ∧ h \ S 6= ∅}

Definition 2.2.5 (Star). Let G = (V,E) be a graph. G is called a star if there exists
a vertex v ∈ V such that:

G = (V, {v} × (V \{v}))

Definition 2.2.6 (Induced subgraph). Let G = (V,H) be a hypergraph and S ⊆ V a
subset of the vertices. We define the induced subgraph G(S) by:

G(S) := (S, {h ∈ H : h ⊆ S})

Definition 2.2.7 (Distances). Let G = (V,H) be a hypergraph. Then we call a function
d :
(V

2
)
→ R+ a distance function.

Definition 2.2.8 (Graph metric). Let G = (V,H) be a hypergraph. Then d :
(V

2
)
→ R+

is a graph metric if

∀u, v, w ∈ V : d(u,w) ≤ d(u, v) + d(v, w)

We extend this definition to sets of vertices S ⊆ V:

d(S) := max
u,v∈S

d(u, v) (2.1)

We can consider Eq. (2.1) as the length of an edge h ∈ H or as the diameter of some
vertex set.
In the algorithm we also need the distance between edges and nodes, thus we define the
functions d̃min, d̃max : (V∪H)2 → R+ and d̃ : (V∪H)2 → P(R+):

d̃(x, y) :=

 d(v, w)

∣∣∣∣∣∣∣ v ∈
{
x, if x ∈ H
{x}, if x ∈ V , w ∈

{
y, if y ∈ H
{y}, if y ∈ V


d̃max(x, y) := max d̃(x, y)
d̃min(x, y) := min d̃(x, y)

Definition 2.2.9 (Ball). Let G = (V,H) be a hypergraph, v ∈ V a vertex, d :
(V

2
)
→ R+

a graph metric and r ∈ R+ a nonnegative number, called the radius. We define the
closed ball B : V×R+ → P(V)× P(H) as

B(v, r) :=
({
u ∈ V with d(v, u) ≤ r

}
,
{
h ∈ H with d̃max(v, h) ≤ r

})
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2.2. Definitions

u v

h1 h2

h3

Figure 2.1.: Example of a path P = (u, v, {h1, h2}). The filled vertices are included in
the path. The triple (u, v, {h1, h2, h3}) is not a path, because every pair of edges has a
common vertex.

Definition 2.2.10 (Edge cost). Let G = (V,H). We define the edge costs as a function
c : H → R>0. Furthermore, we define the edge volume as a function w : H → R+,
w(h) := c(h) · d(h) for h ∈ H.

Definition 2.2.11 (Connected). Let G = (V,H) be a graph. G is connected if for
every set ∅ 6= X ⊂ V the cut C(X) is not empty.

C(X) 6= ∅

Definition 2.2.12 (Path). Let G = (V,H) be a hypergraph. We call a triple P =
(u, v,HP), u, v ∈ V and HP ⊆ H a path from u to v if there exists an ordering HP =
{h1, . . . , hn} with:

• ∀i ∈ [n] : u ∈ hi ⇔ i = 1 and v ∈ hi ⇔ i = n

• ∀i, j ∈ [n] : hi ∩ hj = ∅ ⇔ |i− j| > 1

We denote the edges of the path P = (u, v,HP) by H(P) := HP. Furthermore, for an
edge h ∈ H we write h ∈ P if h ∈ HP and for a vertex w ∈ V we write w ∈ P if w ∈ {u, v}
or |{h ∈ HP |w ∈ h}| = 2.
For any S ⊆ V we denote the set of all paths in G between two different endpoints in S
by

paths(S) :=
{

P = (u, v,HP)
∣∣∣∣∣ {u, v} ∈

(
S

2

)
and P is a path from u to v

}

Given distances d :
(V

2
)
→ R+, we define the length of a path P = (u, v,HP) by:

d(P) :=
∑
h∈HP

d(h)

We call a path P = (u, v,HP) a shortest path from u to v according to d if d(P) is
minimal.

Remark 2.2.13. For a given path P the order of its hyperedge is unique.
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2. Definitions and notation

Definition 2.2.14 (Metric closure). Let G = (V,H) be a hypergraph and d : H→ R+
edge distances. We define the metric closure d : H∪

(V
2
)
by

d(S) := max
{u,v}∈(S

2)
min

P∈paths(u,v)
d(P)

If the distance function is not specified we always use d1 which denotes the metric closure
for all edges having length one.
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3. Problem definition

We introduce now the main problem of this thesis. The task is to assign pairwise different
positions in a domain, for example in Zd, to the vertices of a hypergraph and minimize
the length of the hyperedges.

Definition 3.1.1 (Bounding box length). Let d ∈ N, k ∈ N ∪ {∞} and S ⊆ Zd, then
the bounding box length for k 6=∞ is defined as:

BBOXk(S) = k

√√√√∑
i∈[d]

(
max
s∈S

si −min
s∈S

si

)k

For k =∞ we use the limit

BBOX∞(S) := lim
k→∞

BBOXk(S) = max
i∈[d]

(
max
s∈S

si −min
s∈S

si

)
Remark 3.1.2. For two elements s, t ∈ S the bounding box length is the distance in
the according Minkowski-Metrik with parameter k. Due to the fact that all metrics are
equivalent for finite dimensions, our results can be applied to any k.
Remark 3.1.3. The bounding box length is monotone, i.e. A ⊆ B ⊂ Zd ⇒ BBOX(A) ≤
BBOX(B)

Definition 3.1.4 (Minimal Linear Arrangement Problem). The Minimal Linear Ar-
rangement Problem, MLA, is defined as follows:

Given: (Hyper)graph G = (V,H)
Cost function c : H→ R>0

Task: Find injection π : V→ [|V |] which minimizes∑
h∈H

c(h) · BBOX1(π(h))

Definition 3.1.5 (d-Linear Arrangement Problem). The d-Linear Arrangement Prob-
lem, d-LAP, is defined as follows:
Given: (Hyper)graph G = (V,H)

Cost function c : H→ R>0
Dimension d ∈ N

Task: Find injection π : V→ [|V |] which minimizes∑
h∈H

c(h) · d
√

BBOX1(π(h))
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3. Problem definition

Definition 3.1.6 (d-Dimensional Arrangement Problem). The d-Dimensional Arrange-
ment Problem, d-dimAP, is defined as follows:
Given: (Hyper)graph G = (V,H)

Domain Q ⊆ Zd
Cost function c : H→ R>0

Task: Find injection π : V→ Q which minimizes∑
h∈H

c(h) · BBOX1(π(h))

Depending on the choice of the domain Q we specialize this problem:

• For Q = Zd we call this problem unbounded.

• Given a boundary b ∈ N and Q = [b]d we call this problem Cube-Bounded.

• For two dimensional boundaries b1, b2 ∈ N and Q = b1×b2 we call this problem
Rectangle-Bounded.

• Given Cuboid boundaries b1, . . . ,bd ∈ N and Q =
d

×
i=1

[bi] we call this problem

Cuboid-Bounded.

Remark 3.1.7. The original definition of the problem deals only with the l1 metric, but
naturally we can define it for every Minkowski-Metric, because these metrics are all
equivalent. Attaining an approximation bound in one metric directly results in the same
bound in the others, except for a constant.

In the following, we will name the optimum LP-solution value of the arrangement prob-
lem by OPT.

Definition 3.1.8 (Blockage). Given a dimension d ∈ N and a domain Q ⊆ Zd we define
the set of blockages B ⊆ Q as a subset of the domain.

Suppose we are given a bounded d-Dimensional Arrangement Problem with a hypergraph
G = (V,H) and some blockages B ⊆ Q. We require that there are no vertices placed on
any blockage, i. e. π(V) ∩B = ∅.

Definition 3.1.9 (Terminal). Given a hypergraph G = (V,H) and a domain Q ⊆ Zd.
We define the set of terminals T ⊆ V×Q as a set of tuples of vertices and positions
for with v 6= w and q1 6= q2 for all {(v, q1), (w, q2)} ∈

(T
2
)

Suppose we are given a bounded d-Dimensional Arrangement Problem, with a hyper-
graph G = (V,H) and terminals T ⊆ V×Q. We require π(v) = p for each (v, p) ∈ T .
Consequently, terminals are vertices which are fixed to a position.
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4. Spreading LP

4.1. Linear program

Linear programs are a very powerful tool to express many continuous problems. They
consist of a system of linear inequalities and a linear objective function. If we are
restricted to integral solutions, it depends on the problem if we can solve it by a linear
program. Even if this is not possible, one often can derrive useful bounds. For the d-
Dimensional arrangement problem an LP will be used to calculate adequate edge lengths,
that are in some sense as short as possible, but also fulfill some kind of spreading.
For one vertex it is impossible to place all other vertices with distances as short as
possible to this vertex. In this chapter we show how to express the d-Dimensional
arrangement problem as an LP and what can be done to make this solvable in reasonable
time.

Definition 4.1.1 (Linear inequality). Let M be an arbitrary finite set. We define a
linear inequality as a function f : RM → {0, 1} of the form

f(x) = 1

∑
m∈M

λ(m) · x(m) ≤ b


Where λ : M→ R and b ∈ R.
Furthermore, let x ∈ RM be an arbitrary point. Then the inequality is

• valid if ∑
m∈M

λ(m) · x(m) ≤ b

• tight if ∑
m∈M

λ(m) · x(m) = b

• slacked if ∑
m∈M

λ(m) · x(m) < b

• violated if ∑
m∈M

λ(m) · x(m) > b

Definition 4.1.2 (Linear program). Let M be an arbitrary finite set. We define a linear
program as a tuple (c, I) where c : M → R is the cost function, and I is a set of linear
inequalities. We call a vector x : M→ R a solution of the linear program if

1. ∀f ∈ I : f(x) = 1

2. ∑
i∈M

c(i) · x(i) is minimal

13



4. Spreading LP

Example 4.1.3. One can formulate the problem of embedding the complete graph
G = (V,H) with V = {u, v, w}, into the line {1, 2, 3}. We only consider the dis-
tances. We can obtain that the sum of the edge lengths can be bounded from below
d(u, v) + d(v, w) + d(w, u) ≥ 4. If we now try to minimize the sum of the edges we may
find the optimal solution d(u, v) = d(v, w) = d(w, v) = 4

3 . Of course, if we embed the
graph, we have to select one distance whose value we set to two. In fact, our solution is
a combination of the distances of the three possibilities to embed the vertices, precisely
the average. There is no possibility of excluding this solution by additional inequalit-
ies without excluding one of the three embeddings. This shows that generalizing this
problem to continuous solutions neither leads to valid embeddings nor do the distances
necessarily correspond to a valid embedding.

Linear programs are solvable in polynomial time with the interior point method [16],
but in practice in most cases the simplex algorithm is much faster. A good reference for
linear programming is [29].

4.2. Definition

Let d ∈ N be the dimension, G = (V,H) be a hypergraph, b ∈ Nd be the cube boundary

and π : V→
d

×
i=1

[bi] be an embedding of the vertices. If we consider an arbitrary subset

of the vertices S ⊆ V and a vertex v ∈ S, we obtain lower bounds for the summed
distances: ∑

s∈S
BBOXk(π({v, s})) (4.1)

In this chapter, we are mainly interested in the distances of the vertices, not in their
positions. Our goal is to find a graph metric d which is a useful linear relaxation to
this problem. We will state three different definitions for a lower bound sb : [|V |]→ R+
of (4.1), the so called spreading bound. The first two bounds are only for the case
k = 1. The original spreading bound was defined in 2000 by Even, Naor, Rao and
Schieber [9].

Definition 4.2.1 (Spreading bound [9]). Let d ∈ N be the dimension. Then the un-
bounded spreading bound is defined by

sbu(k) := 1
4 · (k − 1)1+1/ d

An example of this bound can be seen in Fig. 4.1. With increasing number of points the
summed distances of the points has to increase.
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4.2. Definition

Figure 4.1.: Visualization of the Minkowski l1-metric. The first four points can be
placed in a distance of one. The next eight points have at least distance two, followed
by distance three for the next points and so on.

Brenner, Rotter and Schorr showed that one can give an algorithm for the embedding into
two-dimensional rectangles by defining a spreading bound which takes into account, that
the distances decrease linear at some point, see Fig. 4.2.

Definition 4.2.2 (Spreading bound [5]). Let b ∈ N2 be the side lengths of a rectangle.
Then the rectangle spreading bound is defined as

sbr(k) := 1
4 · k

max
{

3
2 ,2−

ln min{b1,b2}
ln k

}

For large bounds and small numbers of elements k this bound is equivalent to Defini-
tion 4.2.1. In the opposite extreme case we get a quadratic increase of the bound, which
corresponds to a linear growth of the distances.

In this thesis, we want to solve the problem on arbitrary cuboids. Currently there is no
useful closed formula for an approximation of the lower bound. This is no problem for
the algorithm, because we can calculate the exact values of the bound. In the proofs
we have more work to do, because we cannot use basic calculations on it. We assume
that the point to which the distances of the other vertices are measured is positioned in
the middle, because this is the point where this bound attains the smallest values (see
Fig. 4.2).

Definition 4.2.3 (Spreading bound). Let b ∈ Nd be the side lengths of the cuboid.
Then according to (4.1) we can define the following bound

sbk(n) := min
S∈([b1]×...×[bd]

n )

∑
s∈S
||s− bb /2c||k (4.2)

Remark 4.2.4. The proofs in [9], [5], [26] and [1] based on the bounds of Definition 4.2.1
and Definition 4.2.2 will also work for Definition 4.2.3 with k = 1, because it is always
at least as accurate as the other ones. Thus, this spreading bound is always greater than
or equal to the rectangle or unbounded spreading bound but smaller than or equal to
the real value.
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4. Spreading LP

Remark 4.2.5. Blockages can be excluded from the boundary [b1]×. . .×[bd]. This would
give an even more realistic bound and thus maybe results in better solutions, but we
currently do not know if we can use this to get a better cube bound.

Figure 4.2.: Visualization of the Minkowski l1- left and l∞-metric right. The spreading
bound is the sum of the distances of the points from the middle point. The left picture
is adapted from [5].

Algorithm 2: Spreading bound Algorithm
input : Cuboid boundaries b1, . . . ,bd ∈ N
output: Spreading bound sb : ∏

i∈[d]
bi → N

1 j := 1

2 f :
[ ∏
i∈[d]

bi → R
]

3 foreach q ∈
d

×
i=1

[bi] do

4 f(j) = ||q − bb /2c||k
5 j := j + 1
6 end
7 sort(f) such that f(i) ≤ f(j) for all i, j ∈ ∏

i∈[d]
bi with i ≤ j

8 sbk(n) := ∑
i∈[n]

f(i)

9 return sb

Definition 4.2.6 (Optimal embedded set). Let k ∈ N ∪ ∞ be an arbitrary number,
d ∈ N be the dimension and b ∈ Nd be the cuboid boundary. Then we say that a set
S ∈

([b1]...[bd]
2

)
is an optimal embedded set of size n ∈ N if:

sbk(|S|) =
∑
s∈S
||s− bb /2c||k

Remark 4.2.7. These are exactly the sets for which sbk(n) in (4.2) attains its minimum.
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4.2. Definition

Lemma 4.2.8. Let d ∈ N and b ∈ Nd. Let S be an optimal embedded set of size n in
the maximum norm. Then

max
o∈S
||o− bb /2c||∞ ≤ 2 · sb∞(|S|)

|S|
+ 1

Proof. Let m := max
o∈S
||o− bb /2c||∞ be the maximum and k be the dimension in which

it is attained, i.e.:

max
o∈S
||o− bb /2c||∞ = max

o∈S
|ok − bbk /2c|

To bound the spreading bound, we split the sum of (4.2) in (4.3). Then we use that the
remaining set is a cuboid (4.4). We consider only one dimension and build the average
of the distances (4.5) see Fig. 4.3:

sb∞(|S|) =
∑
s∈S
||s− bb /2c||∞

=
∑
s∈S

{
||s− bb /2c||∞, ||s− bb /2c||∞ < m
m, ||s− bb /2c||∞ = m

(4.3)

≥
∑
s∈S

{
|sk − bbk /2c|, ||s− bb /2c||∞ < m
m, ||s− bb /2c||∞ = m

(4.4)

=
∑
s∈S


m−1∑
i=1−m

i
|{1−m,...,m−1}| , ||s− bb /2c||∞ < m

m, ||s− bb /2c||∞ = m
(4.5)

=
∑
s∈S


∑

i∈[m−1]

i·2
m·2−1 , ||s− bb /2c||∞ < m

m, ||s− bb /2c||∞ = m

=
∑
s∈S

{
m·(m−1)
m·2−1 , ||s− bb /2c||∞ < m

m, ||s− bb /2c||∞ = m

=
∑
s∈S

{
m−1

2−1/m , ||s− bb /2c||∞ < m

m, ||s− bb /2c||∞ = m

≥
∑
s∈S

m− 1
2

= |S| · m− 1
2

= |S| ·
max
o∈S
||o− bb /2c||∞ − 1

2

17



4. Spreading LP

4 12
7

Figure 4.3.: Visualization of the proof with b = (8, 4), m = 4. Left: The l∞ metric (4.3).
Middle: Only one dimension is considered (4.4). Right: Only the average is considered
(4.5)

Definition 4.2.9 (Spreading LP). Let G = (V,H) be a graph, c : H → R>0 be the
edge cost. In the spreading LP we search for a graph metric d :

(V
2
)
∪ H → R+

which minimizes (4.6) respecting the so called spreading inequalities (4.7), the triangle
inequalities (4.8) and the hyperedge inequalities (4.9):

min
∑
h∈H

c(h) d(h) (4.6)

sb(|U |) ≤
∑
u∈U

d(u, v) ∀U ⊆ V, v ∈ U, |U | ≥ 2 (4.7)

d(u,w) ≤ d(u, v) + d(v, w) ∀{u, v, w} ∈
(

V
3

)
(4.8)

d(v, w) ≤ d(h) ∀h ∈ H, {v, w} ∈
(
h

2

)
(4.9)

Lemma 4.2.10. For every Solution of d-dimAP, the bounding box length is a feasible
solution of the spreading LP.

Proof. Function (4.6) corresponds to the Arrangement Problem target function, see
Definition 3.1.6. We show each inequality seperately for the bounding box length. For
the other bounds see [9] and [5].

• (4.7): For the definition of spreading bounds in this paper the correctness is directly
clear by Fig. 4.2.

• (4.8): This is directly satisfied, because the bounding box length for two vertices
is a metric.

• (4.9): This follows from the fact, that the bounding box length is monotone, see
Remark 3.1.3.
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Remark 4.2.11. In the case of the spreading bound for cuboids in Definition 4.2.3 one
could add the following inequality:

min
S∈([b1]×...×[bd]

|h| )
max
s,t∈S

||s− t||k ≤ d(h)

This gives a more accurate lower bound for hyperedges then the spreading bound (see
Section 4.3.3).

4.3. Optimizations

A linear program can be solved in polynomial time by the ellipsoid-method which was
shown 1979 by Leonid Khachiyan [17], but in practice the simplex method is much faster.
In this chapter, we explain the most important optimizations made to solve this LP in
a reasonable runtime. In the following d :

(V
2
)
∪H→ R+ is the intermediate solution of

the LP. This means that this is currently no graph metric and any of the three kinds of
inequalities in the lp-formulation can be violated.

4.3.1. Sparse spreading LP

We can consider the following LP. Let G = (V,H) be a graph, c : H → R>0 be the
edge cost and d : H → R+ be the distances. Then we define the sparse spreading lp
as:

Definition 4.3.1 (Sparse Spreading LP).

min
∑
h∈H

c(h) d(h)

sb(|U |) ≤
n∑
i=2

d(Pi)
∀n ∈ {2, . . . , |V |}, {u1, . . . , un} ∈

(V
n

)
,

∀P2 ∈ paths(u1, u2), . . . ,Pn ∈ paths(u1, un)

d(v, w) ≤ d(h) ∀h ∈ H{v, w} ∈
(
h

2

)

This definition leads to a solution with the same value as Definition 4.2.9. Furthermore,
if we build the metric closure we get that if we have a solution of this LP we have a
solution for the spreading lp and vice versa. In some papers, like [9], it is referred to this
formulation. The advantage of this LP is that we only get |H | many variables and not
O(|V |2 + |H |). But we pay this with much more complex inequalities. Nevertheless,
in the tests some sparse graphs are solved faster with this formulation, see Section 8.2.
From the presented optimizations in this chapter only the one in Section 4.3.3 and
Section 4.3.6 are useful for this LP.
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4. Spreading LP

4.3.2. Post-optimization of the LP-solver

Very similar to the pre-calculation of the lower bounds we can make a post-optimization
to fix some inequalities by increasing the lengths. So for S ∈

(V
2
)
:

d′(S) := max
{

d(S), min
P∈paths(S)

d(P)
}

This does not change the value of the LP and does not violate any new inequalities.
The runtime is again O(|V |3) with the Floyd-Warshall algorithm [18]. Moreover, this
algorithm can easily be parallelized.

1 4

2

1 4

5

Figure 4.4.: Visualization of the post-optimization. The distance of the two nodes is set
to the highest possible distance.

Lemma 4.3.2. Let G = (V,H) be a hypergraph, d :
(V

2
)
∪H→ R+ be a distance function

and c : H→ R>0 be a cost function. Define d′ :
(V

2
)
∪H→ R+ by

d′(S) := max
{

d(S), min
P∈paths(S)

d(P)
}

Then the following statements hold:

• The solution values (4.6) of d and d′ are the same.

• Every valid inequality in d is also valid in d′.

Proof. We will show each claim separately:

• The solution values (4.6) of d and d′ are the same:
For every hyperedge h ∈ H we have:

d′(h) ≤ min
P∈paths(h)

d(P) ≤ d(h)

• Spreading constraints (4.7):
Let v ∈ V then ∑

u∈U
d′(u, v) ≥

∑
u∈U

d(u, v) ≥ sb(|U |)
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4.3. Optimizations

• Triangle inequalities (4.8):
Let u, v, w ∈ V and d(u, v) + d(v, w) ≥ d(u,w). Then

d′(u,w) = max
{

d(v, w), min
P∈paths(u,w)

d(P)
}

≤ max
{

d(v, w), min
P∈paths(u,v)

d(P) + min
P∈paths(v,w)

d(P)
}

≤ d(u, v) + d(v, w)
≤ d′(u, v) + d′(v, w)

• Hyperedge inequalities (4.9)
Let h ∈ H, u, v ∈ h and d(h) ≥ d(u, v) then

d′(u, v) ≤ min
P∈paths(u,w)

d(P) ≤ d(h) ≤ d′(h)

4.3.3. Pre-calculate lower bounds

For each hyperedge h ∈ H we can set

lb(h) := max
i∈{2,...,|h|}

sb(i)
i− 1 (4.10)

An obvious lower bound for the distance between every pair of nodes is sb(2). If we
want to get a better lower bound, we can set

lb(u, v) := min
P∈paths(u,v)

lb(P) (4.11)

This values can be calculated by the Floyd-Warshall algorithm in runtime O(|V |3). For
sparse graphs calling Dijkstra’s algorithm from every node with O(|H | · |V | log |V |) can
be faster [18].

h
v

u

h3

h2

h1

Figure 4.5.: Visualization of lower bounds. Left: A graph where the shortest path
between two vertices u and v contains three edges. Thus, 3 · sb(2) is a lower bound for
d(u, v). Right: A hyperedge h which contains four vertices. Thus, sb(4)/3 is a lower
bound.
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4. Spreading LP

Proposition 4.3.3. The lower bounds (4.11) and (4.10) do not change the solution
value of the LP.

Proof. We prove both lower bounds separately

• Node-pair distances:
Let {u, v} ∈

(V
2
)
and let d be an optimal solution. Performing the post-optimization

yields to a solution

d′(u, v) = max{d(u, v), min
P∈paths(u,v)

d(P)}

≥ min
P∈paths(u,v)

d(P)

By the correctness of the post-optimization we can restrict the LP to solutions
with this lower bound without increasing the solution value (4.6).

• Hyperedge lengths:
Let i ∈ [|h|], U ∈

(h
i

)
and v ∈ U . Then

(i− 1) · d(h) ≥
∑

u∈U\{v}
d(u, v)

=
∑
u∈U

d(u, v)

≥ sb(|U |)
= sb(i)

4.3.4. Triangle inequalities

The number of triangle inequalities (4.8) is polynomial in the input. Nevertheless the
best way is to start with an empty LP and check its inequalities by the oracle. Otherwise,
each optimization step of the LP-solver would be extremly slow. Moreover, we would
have to store |V |

2·(1+|V |)
2 inequalities, which will make this LP unsolvable if we have

many vertices. For some tests see Section 8.2.

4.3.5. Weight violated inequalities

A natural choice of the violated inequality is to take the one with the highest Euclidean
distance in the geometric representation of the LP. Let λ : S ∈

(V
2
)
∪H→ {−1, 1} be the

coefficients and b ∈ R the bound of an inequality in the LP:∑
S∈(V

2)∪H

d(S) · λ(S) ≤ b
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4.3. Optimizations

If this inequality is violated, then the distance of the hyperplane representing the in-
equality and the point representing the current solution is∑

S∈(V
2)∪H

d(S) · λ(S)− b

√ ∑
S∈(V

2)∪H
λ(S)2

current solution

feasible
solutions

Figure 4.6.: Image of geometric LP representation. The current solution is violating two
inequalities. The Euclidean distances are visualised by the two arrows.

4.3.6. Pre-calculate upper bound

Let G = (V,H) be a graph and S ∈ H∪
(V

2
)
be a set. We can give the following upper

bound for S:

ub(S) := max
i∈[|V |]

{sb(i)− sb(i− 1)} (4.12)

Lemma 4.3.4. The upper bound (4.12) does not change the solution value nor makes
the LP infeasible.

Proof. We show this for each inequality separately

• Optimization function (4.6):
This does not decrease with higher distances. Therefore, there is no reason to set
an edge higher than needed.

• Spreading inequality (4.7)
Let v 6= w be two vertices with d(v, w) > lb(v, w). Without loss of generality let
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4. Spreading LP

U ⊆ V with {u, v} ⊆ U be a set for which sb(|U |) ≤ ∑u∈U d(u, v) is tight. Then
we get the following contradiction:

sb(|U |) =
∑
u∈U

d(u, v)

>
∑

u∈U\{w}
d(u, v) + lb(v, w)

≥
(4.12)

∑
u∈U\{w}

d(u, v) + sb(|U |)− sb(|U | − 1)

≥
(4.7)

sb(|U |)

• Triangle inequality:
Let S ⊂

(V
2
)
be all pairs for which d(u, v) is maximal. Then the triangle inequality

(4.8) cannot become violated if we decrease these distances by an arbitrary small
value.

• Hyperedge inequality:
Let h ∈ H be a hyperedge with d(h) > lb(h) then there must exist a conventional
edge e ∈ H with d(e) > lb(e). Otherwise, we can decrease d(h).

Remark 4.3.5. If we apply both upper and lower bounds, one needs to make sure that
they do not contradict each other. This can be solved by adjusting the upper bound to
the maximum of the upper and lower bound.
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5. Tree metrics

In this chapter we will show how to construct a tree metric with the graph metric, given
by the chapter before. The calculated tree is then transformed into a linear embedding.

5.0.1. Trees

Definition 5.0.1 (Tree). Let T = (VT,ET) be a graph and rT ∈ VT a vertex called the
root. Then we call T = (VT,ET, rT) a tree if

• T is connected

• |ET | = |VT | − 1

Remark 5.0.2. Let T = (VT,ET, rT) be a tree and u, v ∈ VT be two vertices. Then there
is exactly one path from u to v in T.

Definition 5.0.3 (Ancestor). Let T = (VT,ET, rT) be a tree and u, v ∈ VT be two
vertices v is an ancestor of u if v lies on the unique path from rT to u, i.e. for
P ∈ paths(rT, u) we have v ∈ P. Moreover, v is a child of u if in addition δ(u)∩δ(v) 6= ∅.

Definition 5.0.4 (Leaves). Let T = (VT,ET, rT) be a tree. The set of leaves is defined
as LeavesT := {v ∈ V : (|δ(v)| = 1 and v 6= rT) or δ(v) = ∅}. Furthermore, we define
LeavesT as a function LeavesT : VT → P(LeavesT). For u ∈ V let Pu ∈ paths(rT, u) be
the unique path from rT to u, then for any vertex v ∈ VT:

LeavesT(v) := {u ∈ LeavesT |v ∈ Pu}

A tree is full if there exists a k ∈ N such that

∀v ∈ LeavesT : d1
T rT, vT = k

Definition 5.0.5 (Fan-out). Let T = (VT,ET, rT) be a tree. We define the fan-out or
the number of children as a function FT : V→ N by

FT(v) := |{w ∈ VT |w is child of v}|

Definition 5.0.6. (Cluster function) Let T = (VT,ET, rT) be a tree, S an arbitrary
set and Λ : VT → P(S). We call Λ a cluster function if
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5. Tree metrics

• Λ(rT) = S

• ∀v ∈ VT : Λ(v) = ⋃
l∈LeavesT(v)

Λ(l)

• ∀u, v ∈ LeavesT : Λ(u) ∩ Λ(v) = ∅

5.1. Separated trees

Definition 5.1.1 (2-hierarchically well-separated). Let T = (VT,ET, rT) be a tree and
dT : ET → R+ edge lengths. We call (T, dT) 2-hierarchically well-separated if there
exists a ρ > 0 such that for all e ∈ ET, dT(e) = ρ · 2−k holds, where k = min

v∈e
d1

T(rT, v)
is the number of edges in the path from r to e.

Definition 5.1.2 (2-hierarchically closed-well-separated). Let T = (VT,ET, rT) be a
tree and dT : ET → R+ edge lengths. We call (T,dT) 2-hierarchically closed-well-
separated if there exists an ρ > 0 such that for all e ∈ ET the following holds

dT(e) = ρ · 2−k ·
{

1, if LeavesT ∩e = ∅
2, if LeavesT ∩e 6= ∅

where k = d̃1
min(rT, e) is the number of edges in the path from rT to e.

In Section 5.1 we can see the comparison of this metrics. One can think of the closed
version as the limit, if we increase the level of the unclosed version to infinity. In
the 2-hierarchically closed-well-separated trees the length of a path from a vertex to
one of its leaves is independent of the choice of the leave. This will be a very useful
property.

1
2

1
2

1 1

1
2

1
2

1
2

1

2

1

1
2

1
2

1
2

1
2

1

2

r

1 1

1 2

1 1 1

1

2

2

1 1 1 1

1

2

r
Level 0

Level 1

Level 2

Level 3

Figure 5.1.: 2-hierarchically well-separated tree, on the left-hand side the one stated in
the original definition and on the right-hand side the closed one.

Lemma 5.1.3. Let (T,dT) be 2-hierarchically closed-well-separated. Then for every
vertex v ∈ VT, and every child w ∈ LeavesT(v) we have that dT(v, w) = ρ · 21−k with
k = d1

T(rT, v)
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5.1. Separated trees

Proof. Let l := d1
T(rT, w) be the distance from the root to vertex w. We sum the edges

on the path P from v to w which is unique according to Remark 5.0.2:

dT(v, w) = min
P∈paths(v,w)

dT(P) = ρ ·
l∑

i=k
2−i ·

{
1, if i < l
2, if i = l

= ρ · 21−k

Lemma 5.1.4. Let (T,dT) be 2-hierarchically closed-well-separated. Let u, v ∈ LeavesT
and w ∈ VT be the lowest common ancestor. Then dT(u, v) = ρ·22−k with k = d1

T(rT, w).

Proof. By Lemma 5.1.3 we have the following equalities:

dT(v, w) = dT(r, v) + dT(r, w) = ρ · 21−k + ρ · 21−k = ρ · 22−k

Definition 5.1.5. (Induced tree metric) Let G = (V,H) be a hypergraph, T = (VT,ET, rT)
a tree, dT :

(VT
2
)
→ R+ a graph metric on T and Λ : VT → P(V) a cluster function.

Then we call the metric dT :
(V

2
)
→ R+ the induced tree metric if for all u, v ∈ V,

x, y ∈ LeavesT with u ∈ Λ(x) and v ∈ Λ(y):

dT(u, v) = dT(x, y)

Theorem 5.1.6 (Tree metric). Let G = (V,H) be a hypergraph with |V | ≥ 2 and
d :

(V
2
)
→ R+ a metric. One can compute a 2-hierarchically well-separated tree (T,dT)

and a cluster function Λ : VT → P(V) in polynomial time such that the induced tree
metric dT :

(V
2
)
→ R+ satisfies

• dT(v, w) ≥ d(v, w), ∀v, w ∈ V and

• ∑
h∈H

dT(h) ≤ O(log |V |) · ∑
h∈H

d(h).

We will present three algorithms to achieve this. First a randomized one and then two
derandomizations.
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5. Tree metrics

Algorithm 3: Tree metric approximation
input : Hypergraph G = (V,H)

Graph metric d :
(V

2
)
→ R

Start radius ρ ∈ R>0
Injection τ : V→ [|V |]

output: Tree T = (VT,ET, rT)
Cluster function Λ : VT → P(V)

1 Create root r, set (VT,ET, rT) := ({r}, ∅, r) and Λ(r) := V
2 i = 0
3 while ∃t ∈ VT with d1

T(rT, t) = i and |Λ(t)| > 1 do
4 foreach t ∈ VT with d1

T(rT, t) = i and |Λ(t)| > 1 do
5 S := Λ(t)
6 for j = 1 to |V | do
7 U := {w ∈ S : d(τ(j), w) ≤ ρ · 2−i}
8 if U 6= ∅ then
9 Create new tree node t′

10 Λ(t′) := U
11 (VT,ET) := (VT ∪{t′},ET ∪{(t, t′)})
12 S := S \ U
13 end
14 end
15 end
16 i := i+ 1
17 end
18 return (T,Λ)

Order: 1, 8, 4, 9, 7, 2, 3, 6, 5

1 2 3

4 5 6

7 8 9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,7 6,8,9

1,2,4 5,7 3 8,9 6

1 4 2 7 5 3 8 9 6

r = 2.5

r = 1.25

r = 0.625

1 8

1 8 2 8 9

1 4 2 7 5 3 8 9 6

Figure 5.2.: Example of tree metric approximation with ρ = 3. The edges of the tree
are labeled with the vertex that is chosen from the permutation. The edges are marked
dashed for being cut in the first level, densely dotted for the second level and solid for
the third level.

Lemma 5.1.7. For any tree T obtained by Algorithm 3 we have d(u, v) ≤ dT(u, v) for
all pairs u, v ∈ V. Furthermore, let h ∈ H be a hyperedge, w ∈ VT the least common
ancestor and i := d1

T(rT, w) the distance. Then dT(h) = ρ · 22−i.
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5.2. Randomized

Proof. This directly follows from Lemma 5.1.4.

5.2. Randomized

Let G = (V,H) be a hypergraph. Let d :
(V

2
)
→ R be a graph metric.

Algorithm 4: Tree metric probabilistic approximation
input : Hypergraph G = (V,H)

Graph metric d :
(V

2
)
→ R

output: Tree T = (VT,ET, rT)
Cluster function Λ : VT → P(V)

1 Pick ρ ∈ [d(V)/2, d(V)) with density ln(2)/(x · d(V )) randomly
2 Pick random injection τ : [|V |]→ V
3 return TreeMetricApproximation(G,d, ρ, τ)

Remark 5.2.1. The algorithm is independent of the edge costs.
Remark 5.2.2. Some authors, like [1], choose ρ with uniform distribution, but in fact the
choice of the original paper, ln(2)/(x · d(V)), is better. Mathematically this shows up
in equation (5.1), where the radius and the density vanish. Lucidly considering also the
divided cut-radii, this results in a continuous probability for every cut-radius.

Theorem 5.2.3 (Randomized tree metric). Let G = (V,H) be a hypergraph and d :(V
2
)
→ R+ be a graph metric then Algorithm 4 is a randomized polynomial-time algorithm

that produces an induced tree metric dT :
(V

2
)
→ R+, which satisfies:

• ∀h ∈ H : d(h) ≤ dT(h)

• ∀h ∈ H : E[dT(h)] ≤ d(h) · 4 · ln(2) · (1 + ln |V |) ∈ d(h) · O(log |V |).

Proof. Theorem 5.2.3 was first proved by [11] but only for graphs. In [1], this was
generalized to hypergraphs but with a worse constant of 16 · (1 + ln |V |) after bounding
the harmonic sum. We will reproof this theorem with the technique of [11] to attain the
original constant of 4 · ln(2) · (1 + ln |V |) for hypergraphs.

Let h ∈ H be an arbitrary edge. We say that a vertex v ∈ V settles an edge h ∈ H in
iteration i if the vertex of h that is first assigned in iteration i is assigned to v. We say
a vertex v cuts an edge h on level i if h is in C(S), where S ⊆ V are the vertices which
could be assigned to v in level i. Let (Ω,F ,P) be a suitable probability space. Define
the following events:

Xiv(h) := {v cuts h in iteration i} ∈ F
Siv(h) := {v settles h in iteration i} ∈ F
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5. Tree metrics

Note that an edge being cut implies that it was settled, i. e. X ⊆ S.
Let {v1, . . . , vn} = V with d̃max(h, vi) ≤ d̃max(h, vi+1) for all i ∈ [|V | − 1].

E
[
dT(h)

]
= E

[
max
i∈N

1(∃v ∈ V : Xiv ∧Siv) ·
ρ

2i−2

]

≤ E

∑
v∈V

∞∑
i=0

1(Xiv ∧Siv) ·
ρ

2i−2


= E

∑
v∈V

∞∑
i=0

P[Siv |Xiv, ρ] · P[Xiv |ρ] · ρ

2i−2


≤ E

|V |∑
j=1

1
j

∞∑
i=0

P[Xiv |ρ] · ρ

2i−2


=
|V |∑
j=1

1
j

∞∑
i=0

d(V)∫
d(V)

2

1

(
ρ

2i ∈
[
d̃min(h, vj), d̃max(h, vj)

))
· ρ

2i−2 ·
ln(2)
ρ · d(V) dρ (5.1)

=
|V |∑
j=1

1
j

∞∑
i=0

d(V)
2i∫

d(V)
2i+1

1

(
x ∈

[
d̃min(h, vj), d̃max(h, vj)

))
· 22 · ln(2)

d(V) dx

=
|V |∑
j=1

1
j

d(V)∫
0

1

(
x ∈

[
d̃min(h, vj), d̃max(h, vj)

))
· 22 · ln(2)

d(V) dx

≤
|V |∑
j=1

4 · ln(2) · d(h)
j

≤ 4 · ln(2) · d(h) · (1 + ln |V |) ∈ O(log |V |) · d(h)

Remark 5.2.4. We can also pick ρ ∈ [d(V)/4,d(V)/2) because estimated distances of the
tree only decrease and the claim d(h) ≤ dT(h) is still valid.

We have now the guarantee that the stretch of the expected length is logarithmic in |V |,
but we want to bound the sum of all edges:∑

h∈H
c(h) · dT(h) ≤ O(log |V |) ·

∑
h∈H

c(h) · d(h)

In the next chapters we present two variants of derandomization of this algorithm, the
original one in [11] and the one it [1]. Testing all permutations would give us a factor of
|V |! to the running time. Therefore, we have to be more careful.

30



5.3. Pessimistic estimators

Corollary 5.2.5. For a given metric (V,d) on a hypergraph G = (V,H) and a cost
function c : H→ R>0, Algorithm 4 is a randomized polynomial-time algorithm that pro-
duces a 2-hierarchically closed-well-separated tree metric (T, dT), for which the induced
tree metric dT :

(V
2
)
→ R+ satisfies:

• ∀h ∈ H : d(h) ≤ dT(h) and

• ∀h ∈ H : c(h) · E
[
dT(h)

]
≤ c(h) · d(h) · 4 · ln(2) · (1 + ln |V |) ∈ O(log |V |) · w(h).

5.3. Pessimistic estimators

The idea of this method was described by Raghavan in 1988, see [25]. Every time the
algorithm usually makes a random decision, we calculate the expected solution values of
every possible choice. There must be at least one which does not increase the expected
solution value. If possible, we take the smallest one.

Applied to Algorithm 4 this means that we take one vertex after another. Each time
we base our choice on the conditional expectation, given a partial permutation of the
vertices. Ahrens stated in [1] that we can calculate the probability of an edge beeing
cut in a certain level only with the information of how many vertices are near enough
to cut or settle it. Unfortunately, this claim is wrong because he did not consider the
possibility that an edge can be cut by the same vertex in different levels. We will state
a counterexample and a correction for the calculation of the probabilities.
Let G = (V,H) be a hypergraph and d :

(V
2
)
∪ H → R+ be a graph metric. Let

Sl : H → P(V) be all vertices that can settle an edge at iteration l and Cl : H → P(V)
be all vertices that can cut an edge at iteration l.

Cl(h) :=
{
v ∈ V : d̃min(h, v) ≤ ρ · 2−l < d̃max(h, v)

}
Sl(h) :=

{
v ∈ V : d̃min(h, v) ≤ ρ · 2−l

}

Note that we use different notation compared to [1]. The cutting vertices Cl(h) are also
included in the settling vertices S analogously to the definition of an edge being settled
or cut in Section 5.2.
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5. Tree metrics

A B C

v ∈ Sl(h)

v ∈ Cl(h)

Figure 5.3.: Possible combinations of a vertex v beeing included in the settled or cut set
for a hyperedge h. The transition is only possible in one direction for increasing levels.

Let (Ω,F ,P) be a suitable probability space. We define the random variable L(h) : Ω→ N
as the level on which a hyperedge h ∈ H is cut. Ahrens claimed that the probability of
an edge h beeing cut in iteration l ∈ N then is:

P[L(h) = l] =
∏

i∈[l−1]

|Si(h)| − |Cl(h)|
|Si(h)| · |Cl(h)|

|Sl(h)|

Unfortunately, this is not true as we show in Example 5.3.1.

Example 5.3.1. Consider Fig. 5.4. Let the beginning radius be ρ = 8/3. The probab-
ility that h is cut on level 1 is 1/4, on level 2 is 1/2 and on level 3 is 1/4. Let us consider
the formula of thesis [1] for the second level:

∏
i∈[1]

|Si(h)| − |Ci(h)|
|Si(h)| · |C2(h)|

|S1(h)| = |S1(h)| − |C1(h)|
|S1(h)| · |C2(h)|

|S2(h)|

= 4− 1
4 · 3

4 = 9
16 6=

1
2

The problem in this example is that shifting the edge h to level 2 already implies that
it cannot be cut by the leftmost vertex, even if it has the right distance.
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5.3. Pessimistic estimators

h

2/3
4/3

8/3

h

2/3
4/3

8/3

h

2/3
4/3

8/3

h

2/3
4/3

8/3

3

1

2,4

2,4

2,4

Released Cut

ρ · 2 = 16
3

ρ = 8
3

ρ
2 = 4

3

ρ
4 = 2

3

Figure 5.4.: Counterexample to the derandomization of the thesis [1]. All edges have
length one, except for h which has length two. At the top left, h is cut in level one, at
the top and bottom right, in level two and on the bottom left it is cut in level three.

We can fix this by more detailed information on the state an edge has for a given start
radius and partial permutation. We observe that there are only few possible combina-
tions and transitions of the sets in which a vertex is included, see Fig. 5.3. With this
information we can make the following definition:

Definition 5.3.2 (Current level). Given a hypergraph G = (V,H), a graph metric
d :

(V
2
)
→ R>0, a start radius ρ ∈ R>0 and a partial permutation τ : [k] → V with

k ∈ [V], we define the current level L : H→ N as

L(h) = max{l ∈ N with τ([k]) ∩ Sl(h) 6= ∅}

and the cut status F : H→ {True,False} by

F(h) = 1(∃i ∈ [k] :{l ∈ N with τ([i− 1]) ∩ Sl(h) 6= ∅} 6⊇ {l ∈ N with τ(i) ∈ Cl(h)}).

We observe that an edge can only be settled by different vertices if the vertex which first
settles the edge does not cut it. In Fig. 5.5 this is shown by the diagonal edge. This
leads to the following definition:

Definition 5.3.3 (Released). Given a hypergraph G = (V,H) with a graph metric
d :
(V

2
)
→ R+, a start radius r ∈ R>0 and a partial permutation τ : [k] → V with

k ∈ [V], we say that an edge h ∈ H is released in level l ∈ N if it is not cut by the given
points i. e. F(h) = False and it is currently settled on level L(h) = l.
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5. Tree metrics

Order: 1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗

1 2 3

4 5 6

7 8 9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,7 6,8,9

1,2,4

1

r = 2

r = 1

r = 0.5

1

1

1

Order: 1, 8, ∗, ∗, ∗, ∗, ∗, ∗, ∗

1 2 3

4 5 6

7 8 9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,7 6,8,9

1,2,4 5,7 8,9

1 8

r = 2

r = 1

r = 0.5

1 8

1 8 8

1 8

Figure 5.5.: Example of a partial tree metric approximation with ρ = 2. The edges of
the tree are labeled with the vertex that is chosen from the permutation. The edges are
marked loosely dotted if the current level is zero, densely dotted if it is one, dashed if
it is two and solid if it is three. The diagonal edge is released in level one in the first
figure and in level two in the second figure. All other edges are directly cut, when they
are settled.

A crucial observation is that we can calculate the expected length of an edge using
only the information on which level the edge is cut or released. We do not need the
knowledge about the exact partial permutation. Let dT :

(V
2
)
→ R+ be the induced tree

metric.

E
[
dT(h)|L(h) = l

]
=ρ · 22−l

E
[
dT(h)|h is released in level l

]
=

∞∑
i=l+1

ρ·22−i·
∣∣∣Ci(h)\

⋃i−1
j=l+1 Cj(h)

∣∣∣
|Sl+1(h)| (5.2)

+

∞∑
i=l+1

E[dT(h)|h is released in level i]·|Si(h)\(Ci(h)∪Si+1(h))|

|Sl+1(h)|
(5.3)

In (5.2) we calculate the costs of a cut in a certain level. We have to make sure that we
do not count a cut twice, thus we have to exclude the cuts before. In (5.3) we calculate
the probability of an edge being released again at a higher level. In the sense of Fig. 5.3
this is a transition from A directly to C.

With the possibility of calculating the expected length of an edge, we are also able to
calculate the expected volume. Let the current level be defined by L : H → N and the
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5.3. Pessimistic estimators

cut status be defined by F : H → {True,False} then the estimated cost is given by the
following formula:

E
[
dT | F ,L

]
:=

∑
h∈H

c(h) ·
{

E[dT(h)|L(h) = L(h)], if F(h)
E[dT(h)|h is released in levelL(h)], if not F(h)

Algorithm 5: Tree metric estimators approximation
input : Hypergraph G = (V,H),

Graph metric d :
(V

2
)
→ R,

Cost function c : H→ R+
output: Tree T = (VT,ET, rT)

Cluster function Λ : VT → P(V)
1 P :=

{
d(u, v) · 2

⌈
log2

d(V)
d(u,v)

⌉
−1 for {u, v} ∈

(V
2
)}
⊂
[

1
2 d(V), d(V)

)
Init: Fh := False ∀h ∈ H

2 ρ := argmin
r∈P

E[dT | F ,L] with Lh = 0

Init: Lh := 0 ∀h ∈ H
3 for i = 1 to |V | do
4 w := argmin

v∈V \τ([i−1])
E[dT |PlaceNode(G,F ,L, v, r0)]

5 τ(i) := w
6 (F ,L) := PlaceNode(G,F ,L, w, r0)
7 end
8 return TreeMetricApproximation(G,d, r0, τ) Procedure PlaceNode()

input : Hypergraph G = (V,H)
Edge cut flag F : H→ {True,False}
Edge level L : H→ N
Vertex v ∈ V
Start radius ρ ∈ R+

output: Edge cut flag F : H→ {True,False}
Edge level L : H→ N

9 foreach h ∈ H do
10 lnear := max{k ∈ N : d̃min(v, h) ≤ ρ · 2−k}
11 lfar := max{k ∈ N : d̃max(v, h) ≤ ρ · 2−k}
12 if not Fh and lnear > Lh then
13 Lh := max{Lh, lfar}
14 if lnear 6= lfar then
15 Fh := True
16 end
17 end
18 end
19 return (F ,L)
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5. Tree metrics

Theorem 5.3.4 (Pessimistic estimators tree metric). Algorithm 5 returns a 2-hierarchically
well-separated closed tree metric dT :

(VT
2
)
→ R+ by only using deterministic operations,

such that the induced tree metric dT :
(V

2
)
→ R+ fulfills the following inequalities:

• ∀h ∈ H : dT(h) ≥ d(h)

• ∑
h∈H

c(h) · dT(h) ≤ ∑
h∈H

c(h) · d(h) · 4 · ln(2) · (1 + ln |V |) ∈ O(log |V |) · ∑
h∈H

w(h)

Proof. The bound is directly clear comparing the result to Corollary 5.2.5. This al-
gorithm is always at least as good as the expectation and thus attains the same bound
as Algorithm 3.

Proposition 5.3.5. Let the root-radius-set be defined as follows:

P :=
{

d(u, v) · 2
⌈
log2

d(V)
d(u,v)

⌉
−1 with {u, v} ∈

(
V
2

)}
⊂
[1

2 d(V), d(V)
)

Then this set contains a radius for which the minimum is attained.

Proof. Let ρ ∈
[

1
2 d(V),d(V)

)
be a start radius, then ρ̃ = max{x : x ∈ P with x ≤ ρ}

generates exactly the same cuts, but the root radius is not greater, hence the edge lengths
in the tree do not increase.

Proposition 5.3.6. Let lmax = log2
ρ

min
{u,v}∈(V

2) d(u,v) be the maximum level which can

be reached by Algorithm 5, then we can implement this algorithm in running time
O(|V |2 · (|V |+ lmax) · |H |).

Proof. First we run Dijkstra’s algorithm from every vertex, which has running time
O(|V | · |H | log |H |). In the worst case, there are |V |2 possible values for ρ. Each
calculation of the estimated cost has running timeO((|V |+ lmax) · |H |). So choosing the
best ρ has already the desired running time. The rest of the algorithm is implementable in
running time O(|V |2 · |H |). With pre-calculated expectations the procedure PlaceNode
has running time O(|H |). We call this procedure O(|V |) times.

Remark 5.3.7. We can also run the whole algorithm for each element in P, which only
can improve the tree metric, but has running time O(|V |2 · (|V |2 + lmax) · |H |)
Remark 5.3.8. In Remark 5.2.4 we stated that it is possible to half the start radius in
Algorithm 4. This is also possible in Algorithm 5. It could be useful, because otherwise
the algorithm will always try to choose the first vertex such that it settles the whole
graph in the first iteration, see 8.3.
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5.4. Region growing

5.4. Region growing

In [11] the authors first describe the randomized algorithm and then a derandomization,
which grows regions around each chosen point. Technically, the stated algorithm is not
really a derandomization, because the arguments for the quality guarantee arise from an
analytic view. They first proved their approximation bound for graphs with the restric-
tion that the smallest edge length is one and the longest length is |V |. Furthermore,
they distribute additional weights over all edges to get a lower bound for the volume
included in the ball of radius one. By using the original idea of the proof, we show that
one can get rid of these assumptions without changing anything on the graph and apply
the algorithm directly. By this we can expect a much better constant than in the original
paper, even though they only state the asymptotic bound. Furthermore, we generalize
the proof to hyperedges.

Definition 5.4.1 (Volume). Let G = (V,H) be a hypergraph, d :
(V

2
)
∪ H → R+ be a

graph metric and c : H → R>0 be a cost function. The volume of the whole graph is
defined by

W :=
∑
h∈H

w(h) =
∑
h∈H

c(h) · d(h)

Furthermore, for a vertex t ∈ V and a radius r ∈ R+ we define the volume of the
neighborhood:

W(t, r) :=
∑
h∈H

c(h) ·


0, r ∈ [0, d̃min(t, h)]
d(h)·(r−d̃min(t,h))

d̃max(t,h)−d̃min(t,h) , r ∈ (d̃min(t, h), d̃max(t, h))
d(h), r ∈ [d̃max(t, h),∞)

In the following we will use a shorter notation for the cost of a cut:

c(t, r) := c(C(B(t, r))) =
∑
h∈H

c(h) · 1
(
r ∈

[
d̃min(t, h), d̃max(t, h)

))
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Algorithm 6: Tree metric growing
input : Hypergraph G = (V,H)

Graph metric d :
(V

2
)
→ R

Cost function c : H→ R>0
Start radius ρ ∈ [d(V)/2, d(V))

output: Tree T = (VT,ET, rT)
Cluster function Λ : VT → P(V)

1 Create root r, set (VT,ET, rT) := ({r}, ∅, r) and Λ(r) := V
2 i = 0
3 while ∃t ∈ VT with d1

T(rT, t) = i and |Λ(t)| ≥ 1 do
4 foreach t ∈ VT with d1

T(rT, t) = i and |Λ(t)| ≥ 1 do
5 S := Λ(t)
6 while S 6= ∅ do
7 t := argmax

t∈S
WG(S)(t, ρ · 2−i−1)

8 ri(t) := argmin
r∈[ρ·2−i−1,ρ·2−i]

cG(S)(t,r)
WG(S)(t,r)

9 U := {v ∈ S : d(t, v) < ri(t)}
10 Create new tree node t′
11 Λ(t′) := U
12 (VT,ET) := (VT ∪{t′},ET ∪{(t, t′)})
13 S := S \ U
14 end
15 end
16 i = i+ 1
17 end
18 return (T,Λ)

Lemma 5.4.2. The minimum in line 8 can be calculated by considering only the fol-
lowing distances:

X :=
[
ρ · 2−i−1, ρ · 2−i

]
∩
(
d̃(t, S) ∪

{
ρ · 2−i

})

Proof. Suppose the minimum is attained at the radius r ∈ [ρ · 2−i−1, ρ · 2−i]. Then the
radius r′ := min{y ∈ X : y > r} does not increase the fraction in line 8, it holds that
WG(S)(t, r) ≤WG(S)(t, r′) and cG(S)(t, r) = cG(S)(t, r′).

Before we can prove the approximation bound of this algorithm, we have to show some
helpful lemmata.
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ti−1 ti

BSi(ti, ri(ti)
BSi(ti, ρ · 2i)

BSi(ti, ρ · 2i+1)

BSi−1(ti−1, ri−1(ti−1))

BSi−1(ti−1, ρ · 2i−1)

BSi−1(ti−1, ρ · 2i)

.

Figure 5.6.: Visualization of two cuts by Algorithm 6

Lemma 5.4.3. For every weak differentiable function f : [a, b] → R and every null set
N ∈ [a, b] there exist a number r ∈ [a, b] \N such that

∂f(r)
∂r

· 1
f(r) ≤

1
b− a

· ln f(b)
f(a) .
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Proof.
b∫
a

ln f(b)
f(a)dr = ln f(b)

f(a) · (b− a)

=
∣∣∣b
a

ln f(r) · (b− a)

=
b∫
a

∂ ln f(r)
∂r

· (b− a)dr

=
b∫
a

1
f(r) ·

∂f(r)
∂r

· (b− a)dr

Comparing the functions in the integrals gives us the claim.

Lemma 5.4.4. For every t ∈ V and i ∈ N that were chosen in Algorithm 6 there exists
an r ∈ [ρ · 2−i−1, ρ · 2−i) such that

c(t, r)
W(t, r) ≤

1
ρ
· 2i+1 ln W(t, ρ · 2−i)

W(t, ρ · 2−i−1) .

Proof. The function W is not continuous, thus we have to get rid of the jumps in the
values.

f(r) :=
r∫

ρ·2−i−1

{
∂W(t,r)

∂r , W(t, r) is differentiable
0, otherwise dr

= lim
y↗x

W(t, y)−
∑

x∈(ρ·2−i−1,r)

(
lim
y↗r

W(t, y)− lim
y↘x

W(t, y)
)

Note that the following three statements hold:

1) c(t, r) ≤ ∂f(r)

2) W(t, r) ≤ f(r)

3) W(ρ · 2−i) = f(ρ · 2−i)

Now f is continuous and thus there exist an r ∈ [ρ · 2−i−1, ρ · 2−i) such that

c(t, r)
W(t, r) ≤1),2)

∂f(r)
∂r

· 1
f(r) ≤5.4.3

21+i

ρ
ln f(ρ · 2−i)
f(ρ · 2−i−1) ≤2),3)

21+i

ρ
· ln W(t, ρ · 2−i)

W(t, ρ · 2−i−1)

We are now ready to prove the following theorem:
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Theorem 5.4.5 (Growing tree metric). Algorithm 6 is a deterministic algorithm, which
returns a 2-hierarchically well-separated closed tree metric dT :

(VT
2
)
→ R+ such that the

induced tree metric dT :
(V

2
)
→ R+ fulfills the following statements:

• ∀h ∈ H, dT(h) ≥ d(h) and

• ∑
h∈H

c(h) · dT(h) ≤ 8 · ln(|H | · 4) · ∑
h∈H

c(h) · d(h) ∈ O(log |H |) · ∑
h∈H

w(h).

Proof. Now we lay the blame of each cut on its enclosing volume, more precise to the
edges which are inside or in a cut of a vertex in V. For each edge h ∈ H we sum all
cuts that are blamed to h. At the end we will sum the blamed value over all edges.
Let k ∈ N be the depth where h is cut. We get a chain of vertices tk, . . . , t0 ∈ V, radii
rk < . . . < r0 < ρ with ρ · 2−i−1 < ri ≤ ρ · 2−i and sets Sk ⊆ . . . ⊆ S0 ⊆ V to which
the edge is settled. Because h was not cut in level k + 1 we can bound the length by
d(h) ≤ ρ · 21−k.

0∑
i=k

ρ · 22−i · cSi(ti, ri) ·
c(h) · d(h)
WSi(ti, ri)

≤
5.4.4

c(h) · d(h) · 8 ·
0∑
i=k

ln WSi(ti, ρ · 2−i)
WSi(ti, ρ · 2−i−1)

≤ w(h) · 8 ·
0∑
i=k

ln WSi(ti, ρ · 2−i)
WSi+1(ti+1, ρ · 2−i−1)

= w(h) · 8 · ln WS0(t0, 20)
WSk

(tk, ρ · 2−k−1)

≤ w(h) · 8 · ln W
c(h) · ρ · 2−k−1 (5.4)

≤ w(h) · 8 · ln W ·4
c(h) · d(h)

= w(h) · 8 · ln W ·4
w(h)

In inequality (5.4), we used that tk is the node which maximizes WSk
(tk, ρ · 2−k−1). We

could have taken tk ∈ h which would have given us c(h) · ρ · 2−k−1.

We can deduce the following bound for weight that is blamed to the whole:
∑
h∈H

8 · c(h) · dT(h) ≤
∑
h∈H

8 · w(h) · ln W ·4
w(h)

= |H | · 8 ·
∑
h∈H

1
|H | · w(h) · ln W ·4

w(h)

≤
5.4.6
|H | · 8 · W

|H | ln
W ·4

W /|H | (5.5)

= W ·8 · ln(|H | · 4)
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5. Tree metrics

In inequality (5.5) we used the Jensen inequality and the fact that x · ln(W ·4/x) is a
concave function.

Lemma 5.4.6. The function g(x) := x · ln(W ·4/x) is concave.

Proof.

∂g

∂x
(x) = ln W ·4

x
− x · x

W ·4 ·
W
x2 = ln W ·4

x
− 1

∂2g

∂2x
(x) = − x

W ·4 ·
W ·4
x2 = −1

x
≤ 0

Remark 5.4.7 (Vertices with same distance). Given a graph G = (V,H), a graph metric
d :
(V

2
)
→ R a vertex t ∈ V and a set of vertices S ⊆ V \{t} with d(t, v) = d(t, w) for all

v, w ∈ S, there is no reason why we have to decide that all vertices in S or none of them
are mapped to t. We allow the algorithm to take a subset of the vertices to minimize
the cut in line 8 of Algorithm 6. The order in which the algorithm parses is fixed, one
could think of also optimizing over this order.

Proposition 5.4.8. Algorithm 6 can be implemented in running time O(|H | · |V | ·
(log |V |+ log lmax)) with lmax = ln2

ρ
min
{u,v}∈(V

2) d(u,v) .

Proof. Depending on the input we first have to calculate the distances between all pairs
of vertices. Furthermore we have to order them by their distance to each vertex. This
can be done with Dijkstra in a running time of O(|H | · |V | · log |V |). Then in each
iteration in line 7 we have to calculate the volume of the ball around every vertex to find
the maximums. Given that we have ordered the vertices by their distance this needs
O(|H |) in the worst case. We have to do this for every vertex in every iteration which
would give us O(|H | · |V | · log lmax).

5.5. Order of tree embedding

We want to construct a linear embedding π̃ : V → [V] with the calculated tree. Given
a Hypergraph G = (V,H), a tree T = (VT,ET, rT) and vertex references Λ : VT → P V
we recursively iterate over the vertices of the tree, beginning by the root rT. Every
time we pass a leaf vT ∈ LeavesT of the tree we assign the next position in the lin-
ear embedding π̃ to the referenced vertex Λ(vT) to the linear embedding π̃ : V →
[V].
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5.5. Order of tree embedding

We have not specified in which order we recursively iterate through the tree. This is not
necessary to achieve the optimality guarantee, but in practice we can get much better
results by optimizing this. The optimization works as follows. We start from the root
and go down step by step. The children of each node are contracted. Thus, we have to
solve a linear arrangement problem with terminals.

42 501 93 6 78 42 50 1 93 6 7 8

Figure 5.7.: Two linear embeddings of a tree. On the left-hand side with an arbitrary,
on the right-hand side with an optimized order.

Lemma 5.5.1. There exists no upper bound for the maximal fan-out of the trees calcu-
lated by one of the three introduced tree metric algorithms.

Proof. Let n ∈ N. Consider a graph G :=
(
V,
(V

2
))
. Then an optimal solution of the LP

is given by the following formula:

d(u, v) = sbk(|V |)
|V | − 1 ∀{u, v} ∈

(
V
2

)

All nodes are separated at the same level and the resulting tree is a star with a fan-out
of |V | − 1.

Remark 5.5.2. This solution is neither unique nor a vertex of the LP. We leave it as an
open problem if this lemma also holds for vertices in normal graphs. For hypergraphs
we can consider G = (V, {V}) for which this solution is unique.

So we cannot expect that a full enumeration has polynomial runtime. Thus, we imple-
mented a greedy optimization. Notice that even if we can find optimal solutions for the
linear arrangements, this does not necessarily result in the best embedding of this tree,
see Fig. 5.8.
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5. Tree metrics

0 1 2 3 4 0 12 34

Figure 5.8.: Example of an optimized tree whose embedding is not optimal (left-hand
side) and the tree with an optimal embedding (right-hand side).
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6. Hilbert space-filling curve

We use a modification of Hilbert space-filling curves to embed a line into a d-dimensional
cuboid. These curves were first defined by Hilbert as a special case of peano curves [14].
An interesting property of this curves is that they are local in the sense, that one can
calculate good bounds for distances of points based on the distance of their indices (see
Lemma 6.3.1). This chapter is built as follows: First we describe an algorithm that
generalizes this curves to cuboids. Then we prove a bound for infinite space and then a
bound for cuboids.

Figure 6.1.: A Hilbert space-filling curve in [4]3 generated by Algorithm 8

6.1. Base Elements

First, we have to create the base elements of the curve. They can be easily expressed by
bit-wise operations. In Algorithm 7 the vectors are interpreted as the bit-representation
of numbers and logical operations are performed bit-wise. Furthermore, we interpret 0
as false and 1 as true. We introduce some basic operations that we will need to describe
the algorithm.

Definition 6.1.1 (Bit-wise representation). Let n ∈ N be an arbitrary number and
d ∈ N the dimension, then we define the bit-wise representation x ∈ {0, 1}d of n in
dimension d by

xi = 1

(
x > 2i−1 mod 2i

)
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6. Hilbert space-filling curve

Remark 6.1.2. For a bit-wise representation x ∈ {0, 1}d we can calculate the represented
number n ∈ [2d] by

n =
∑
i∈[d]

xi · 2i−1

Definition 6.1.3 (Bit-wise operations). Let x, y ∈ {0, 1}d be the representation of two
binary numbers. Furthermore, let i ∈ [d] be an index, then we define the following
bit-wise operations:

• (x⊕ y)i = 1(xi + yi = 1)

• (¬x)i = 1(1− xi)

• (x ∧ y)i = 1(xi = 1 and yi = 1)

Algorithm 7: Multidimensional Hilbert base-curve
input : Dimension d ∈ N
output: Hilbert base-curve b : 2d → {0, 1}d

1 b(1) := (0, . . . , 0︸ ︷︷ ︸
d times

)2

2 for i = 1 to 2d − 1 do
3 Let x be the bit-wise representation of i and x− of i− 1
4 b(i+ 1) := b(i)⊕ (x ∧ (¬(x−))// a bit of b is flipped exactly when it

changed from 0 to 1 in x

5 end
6 return b

Remark 6.1.4. The Hilbert base-curves have the following properties:

• In coordinate [d−1] they begin and end at 0

• In coordinate d they begin at 0 and end at 1

• The l1 distance between two points with index i, j ∈ [2d] is smaller than min(|i− j|, d)

Figure 6.2.: Hilbert-base curves up to dimension 3
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6.2. Divide and conquer algorithm for arbitrary cuboids

6.2. Divide and conquer algorithm for arbitrary cuboids

Usually we would recursively divide a cube into 2d sub-cubes. To get cuboids we weaken
this algorithm. In the first iteration we only subdivide in the longest directions. As we
go on we allow two subdivide the cuboids also in shorter directions. Until now all sizes
are powers of two. We use the last iteration to subdivide only some hyperplanes and get
the desired sizes.
Algorithm 8: Multidimensional Hilbert Curve
input : Cuboid boundary b ∈ Nd

output: Curve q ∈ S
(

d

×
i=1

[bi]
)

1 pi = blog2 bic
2 h̃i := 2pi

3 q1 ∈ S
(
[1]d

)
4 q1(1) := ((1, . . . , 1))
5 for k = 1 to 1 + max

i∈[d]
pi do

6 Eij := 1(pj > k ∨ (k = max
l∈[d]

pl ∧ j < b̃i − bi)) // direction i ∈ [d] expanded

at hyperplane j
7 ρ(x)i := xi + ∑

j∈[xi]
Eji ; // Projection of point x

8 qk+1 ∈ S
(

d

×
i=1

[min(2max(k−pi,0),bi)]
)

9 n := 0
10 for i = 1 to | qk | do
11 d′ := ∑

l∈[d]
Eipi

12 b := AlgorithmMultidimensionalHilbertBaseCurve(d′)
13 Let T : {0, 1}d → {0, 1}d be an appropriate affine transformation
14 for j = 1 to |b | do
15 qk+1(n) := ρ(qk(i)) + T (bj)
16 n := n+ 1
17 end
18 end
19 end

Result: q1+max
i∈[d]

pi

Remark 6.2.1. Choosing the right affine transformation T is somehow a bit tricky. We
always want to start next to the current last point of qk+1. We want to end at a point
next to the next cuboid, see Fig. 6.3. The first claim fixes all coordinates, the second
only one. So we first look if the coordinate which is fixed in the beginning and in the end
is fixed to the same value. If this is the case, we use the flipped coordinate of the base
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6. Hilbert space-filling curve

curve to achieve this, if not we swap the flipped coordinate to another dimension. After
this we mirror all not matching coordinates, such that the beginning of the sub-curve is
at the right point. In the case that our base curve only has dimension one we are no4t
able to swap the flipped coordinate to another dimension, so we would get a jump of the
curve in this case, see Fig. 6.4. This is only possible for cuboids with boundaries that
are not powers of 2.

Figure 6.3.: Example of fixed positions of a Hilbert space-filling curve in a 4 × 4 grid.
The fixed start-points are marked in gray, the end-points in light gray.

Figure 6.4.: Example of diagonal lines in a 7× 2 grid. The fixed start-points are marked
in gray, the end-points in light gray.

Lemma 6.2.2. Algorithm 8 has running time O
( ∏
i∈[d]

bi
)

Proof. The number of points of the curve at least doubles in each iteration except for
the last iteration. We can bound the next to the last and all previous iterations by the
last one. So we get three times the running time of the last iteration. This gives us the
desired bound.

Definition 6.2.3 (Clustering). Let S be an arbitrary finite set. We define a clustering
as a sequence of sets G1 ⊆ . . . ⊆ Gn ⊂ P(S) for which
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6.3. Bound for infinite space

• G1 =
{

d

×
i=1

[bi]
}
,

• Gn contains only singletons, ie ∀s ∈ Gn : |s| = 1,

• ∀i ∈ [n] ∀s, t ∈ Gi : s ∩ t = ∅ and

• ∀i ∈ [n− 1] ∀t ∈ Gi ∃S ⊆ Gi+1 such that t = ⋃
s∈S

s.

Remark 6.2.4. We can define a clustering G1 ⊆ . . . ⊆ Gn with G1 = [b1]× . . .× [bd] for
Algorithm 8, where Gi are the cuboids, which arise from iteration i in the last iteration.

Lemma 6.2.5. Let Gk be the grid of iteration k. Then for each s ∈ Gk we have that
for all i ∈ [d]:

max
x,y∈s

|xi − yi| ≤ 2 ·min
{

bi,max
j∈[d]

max
x,y∈s

|xj − yj |
}
. (6.1)

Moreover, if all cuboid boundaries bi are powers of two we have

max
x,y∈s

|xi − yi| = min
{

bi,max
j∈[d]

max
x,y∈s

|xj − yj |
}
. (6.2)

Proof. We will analyze the cuboids, created by the algorithm beginning by the last
iteration. If all boundaries are powers of two the last iteration does nothing and all
elements in G1+maxi∈[d] pi are only one point. Otherwise, we can have different cuboids
with either one or two points in each direction. From this point on, each iteration we
merge two cuboids in each direction as long as we have not reached the corresponding
boundary. Thus, in the case of all boundaries being a power of two, the number of
points in all directions are the same, except for the directions which the boundary is
already reached. This shows equation (6.2). If this is not the case, the ratio of the
maximum number of points in a direction versus the minimum number of points in
another direction, in which we have not reached the boundary yet, can be bounded by
two. This shows Eq. (6.1).

6.3. Bound for infinite space

Lemma 6.3.1. Let d, k ∈ N be two natural numbers. Then there exists a bijection
q :

[
2k·d

]
→

[
2k
]d

such that || q(i) − q(j)||1 ≤ 2·d+2
d√
d
· d
√
|i− j| for all i, j ∈

[
2k·d

]
.

Moreover, such a mapping can be computed in polynomial time.
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6. Hilbert space-filling curve

Proof. Let d ∈ N be the dimension. Furthermore, let i, j ∈ [2k·d] be two indices. Then
there exists a t ∈ {2n, n ∈ N} (the level) and an n ∈ [2d − 1] with

td · n < |i− j| ≤ (n+ 1) · td

Then we can bound the distance by the following (see Fig. 6.5):

|| q(i)− q(j)||1 ≤ (d+ min(n+ 1, d+2)) · t

< (d+ min(n+ 1, d+2)) · d

√
|i− j|
n

= d

√
(d+ min(n+ 1, d+2))d

n
· |i− j|

≤ d

√
(2 · d+ 2)d

d
· |i− j|

= 2 · d+2
d
√
d
· d

√
|i− j|

i j

t

t t i

j

t

t t i

j

t

t t

Figure 6.5.: Visualization of the l1-distance for different values of n in Lemma 6.3.1.
The worst case is that i and j lie in opposite corners of the sub-cubes, which gives us a
distance of d ·t (left). For n ∈ [d−1] it is possible that there are n sub-cubes between the
sub-cubes of i and j, so we have to add (n+1)·t (middle). With increasing n the possible
distance of the sub-cubes also increases until we reach n = d+1 (right). From this point
forward we can bound the additional distance by (d+2) · t, because |i− j| ≤ (n+ 1) · td
and thus there cannot be a cube in between.

Remark 6.3.2. This bound is not tight. For the tight bound 3 ·
√
|i− j| − 2 in N2 and a

near tight bound 4.74458 3
√
|i− j| in N3 we refer to [22]. Furthermore, in [26] Rotter and

Vygen showed the bound 4 · (d+1) d
√
|i− j| for cubes by deleting rows and columns. We

found a small error in the proof and correcting this error leads to 4 · (d+1) · d
√

2 · |i− j|.
This result also holds for the algorithm in this thesis. Nevertheless there is a small
difference: While they delete the rows and columns we just do not insert them.
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6.3. Bound for infinite space

6.3.1. Blockages

Lemma 6.3.3. Let d, k ∈ N be two natural numbers and B ⊆
[
2k
]d

be a set of blockages.

Then there exists a bijection q :
[
2k·d − |B |

]
→
[
2k
]d
\ B such that

|| q(i)− q(j)||1 ≤
2 · d+2

d
√
d
· d

√
|i− j|+ | B | ∀i, j ∈

[
2k·d − |B |

]
Furthermore, such a mapping can be computed in polynomial time.

Proof. Let q :
[
2k·d

]
→
[
2k
]d

be defined as in Lemma 6.3.1. We skip blockages in the
embedding, see Fig. 6.6, by defining a new indexing function f :

[
2k·d − |B |

]
→
[
2k·d

]
.

f(i) := min
{
j ∈

[
2k·d

]
, | q([j]) \ B | = i

}
.

The new bijection can then be defined as q̃ :
[
2k·d − |B |

]
→
[
2k
]d
\ B, q̃(i) := q ◦f .

Calculating the distance leads us to

||q̃(i)− q̃(j)||1 ≤ || q ◦f(i)− q ◦f(j)||1

≤ 2 · d+2
d
√
d
· d

√
|f(i)− f(j)|

≤ 2 · d+2
d
√
d
· d

√
|i− j|+ | B |

1 2

3

4 5

6 7

8 9

1011

12 13

Figure 6.6.: Example of an embedding with tree blockages and a new labeling.
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6. Hilbert space-filling curve

6.4. Bound for cuboids

Lemma 6.4.1. Let b ∈ Nd be the boundary, Q := [b1]× . . .× [bd] and n ∈ [Q]. Let O be
an optimal embedded set of size n in the maximum norm. Furthermore, let q : [|Q |]→ Q
be a Hilbert space-filling curve created by Algorithm 8. Then for every i, j ∈ [|Q |] with
|i− j| ≤ n we have the following bound:

|| q(i)− q(j)||∞ ≤ 8 · max
x,y∈O

||x− y||∞

Furthermore, if all b are powers of two we can decrease the constant:

|| q(i)− q(j)||∞ ≤ 4 · max
x,y∈O

||x− y||∞

Proof. Let Gk be the grid of iteration k. Let k ∈
[
max
i∈[d]

pi

]
be the smallest number such

that there exists Q−,Q+ ∈ Gk with

• ∃k ∈ {i, . . . , j} : q({i, . . . , k}) ⊆ Q− and q({k + 1, . . . , n}) ⊆ Q+

• Q− ∩Q+ = ∅

Lets have a closer look on the cuboids Q− and Q+ to see why equation 6.3 holds. In
each iteration the dimensions of the cuboids in the grid can be doubled. Lets assume we
take k such that all cuboids in the grid have at least the size of O, and hence at least as
many elements as O. We now can follow that each length of the cuboids in the grid is
smaller or equal to four times the cuboid lengths of O. We have a factor of two because
we may have to take the doubled size. The disturbance of Lemma 6.2.5 causes another
factor of two.

|| q(i)− q(j)||∞ ≤ max
x,y∈Q− ∪Q+

||x− y||∞

≤ 2 ·max
{

max
x,y∈Q−

||x− y||∞, max
x,y∈Q+

||x− y||∞

}
≤

6.2.5
8 · max

x,y∈O
||x− y||∞ (6.3)
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6.4. Bound for cuboids

O

. . . . . . . . .o1 o16

q

O

Q− Q+

Figure 6.7.: Sketch of the distances of the Hilbert vs the optimal embedding. On the
left there are 16 vertices optimally embedded in the l∞ norm which results in a block of
size 4×4. On the right we see the Hilbert embedding of this 16 vertices. In this example
the maximum l∞ distance between points in the optimal embedding is 4, the maximum
l∞ distance in the Hilbert embedding is 5.
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7. Proof of main theorem

Theorem 7.1.1 (Rotter, Vygen (2013)). Algorithm 1 together with Algorithm 2, 5 and
8 is a deterministic O(log |V |)-approximation algorithm for the unbounded d-dimAP.

Proof. Let G = (V,H) be a graph and d :
(V

2
)
→ R+ be the optimum solution to the

spreading LP. Let T = (VT,ET) be the tree and Λ : VT → P(V) be the references to
the vertices calculated by Algorithm 5. Let u, v ∈ V be two vertices. Let t ∈ VT be the
unique tree node with u, v ∈ Λ(t) and |Λ(t)| minimal. We assume that n := |Λ(t)| ≥ 5.
We have∑x∈Λ(t) d(u, x) ≥ sb(n) where sb := sbu in this proof. Therefore, we can deduce
the following inequality:

∃w ∈ Λ(t) : d(u,w) ≥ sb(n)
n− 1 (7.1)

This inequality holds independently of which spreading bound we choose. Now we can
bound the distances step by step:

|| q(π̃(u))− q(π̃(v))||1 ·
d√
d

2·d+2 ≤6.3.1
d

√
| π̃(u)− π̃(v)| (7.2)

≤ d
√
n− 1 (7.3)

= (n− 1)1+1/d/(n− 1)
=

4.2.1
4 · sbu(n)/(n− 1)

≤
(7.1)

4 · d(u,w)

≤
5.3.4

4 · dT(u,w)

≤ 4 · dT(u, v)

Summing over all edges leads us to∑
h∈H

c(h) · BBOX1(q(π̃(h))) ≤
∑
h∈H

2·d+2
d√
d
· 4 · c(h) · dT(h)

≤
5.3.4

∑
h∈H

2·d+2
d√
d
· 16 · ln(2) · c(h) · d(h) · (1 + ln |V |)

≤ OPT ·O(log |V |)
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7. Proof of main theorem

Remark 7.1.2. In [26] Vygen and Rotter proved this result for the bounded d-dimAP with
a slightly worse constant and a different construction of the Hilbert space-filling curve.
In contrast to this thesis they delete rows and columns which they want to get rid of.

Theorem 7.1.3. Let B ⊆ Q be a set of blockages then Algorithm 1 together with Al-
gorithm 2, 5 and 8 is a deterministic O( d

√
| B | · log |V |)-approximation algorithm for the

cube-bounded d-dimAP.

Proof. In the case that we have a set of blockages B ⊆ Q we would get d
√
n− 1 + | B | in

equation (7.3) due to Lemma 6.3.3 which can be bounded by d
√
n− 1 · d

√
| B |+ 1. Now

we continue with the proof like in the proof of Theorem 7.1.1. In line (7.2) we use the
slightly worse constant, which was shown for cubes in [26]. Then, for the final bound,
we get an asymptotic factor of O( d

√
| B | · log |V |) to the optimum solution.

With this theorem we have improved the result of [12] for cubes of arbitrary dimen-
sion.

Theorem 7.1.4 (Main theorem). Algorithm 1 together with Algorithm 2, 5 and 8 is a
deterministic O(log |V |)-approximation algorithm for cuboid bounded d-dimAP.

Proof. Let G = (V,H) be a graph and d :
(V

2
)
→ R+ be the optimum solution to the

spreading LP. Let T = (VT,ET) be the tree and Λ : VT → P(V) be the references to
the vertices calculated by Algorithm 5.
Let u, v ∈ V be two vertices. Let t ∈ VT be the unique tree node with u, v ∈ Λ(t) and
n := |Λ(t)| minimal. Let O ⊆ [b1]× . . .× [bd] be an optimal embedded set of size |O| = n
to the maximum norm. Then we get the following inequalities:

|| q(π̃(u))− q(π̃(v))||1 ≤ d ·|| q(π̃(u))− q(π̃(v))||∞ (7.4)
≤

6.4.1
d ·8 · max

o,p∈O
||o− p||∞

≤ d ·16 ·max
o∈O
||o− bb /2c||∞

≤
4.2.8

d ·16 ·
(

2 · sb∞(n)
n

+ 1
)

≤ d ·16 ·
(

2 · sb1(n)
n

+ 1
)

(7.5)

≤
(7.1)

d ·48 · d(u,w)

≤
5.3.4

d ·48 · dT(u,w)

≤ d ·48 · dT(u, v)
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Summing over all edges leads to∑
h∈H

c(h) · BBOX1(q(π̃(h))) ≤
∑
h∈H

d ·48 · c(h) · dT(h)

≤
5.3.4

∑
h∈H

d ·48 · 4 · ln(2) · c(h) · d(h) · (1 + ln |V |)

≤ OPT ·O(log |V |)

Proposition 7.1.5. As we pointed out in Remark 3.1.7 we can also consider this problem
with other Minkowski metrics. In the case of the maximum norm we can drop the
constant d from the approximation bound.

Proof. We only state the differences to the proof of Theorem 7.1.4. In line (7.4) we do
not need to swap to the maximum norm, so we do not have to insert the factor d. In
line (7.5) we are not switching back to the l1-norm. In the spreading LP we have to use
the spreading bound for the maximum-norm sb∞.
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8. Tests

In this chapter we provide some test results of the program we wrote. We first analyze
how the runtime of solving the spreading LP behaves for combinations of different graphs
and parameters. Then we compare the different algorithms which construct the tree
metrics.

8.1. Instances

Name Explanation Nodes Edges H. edges Domain OPT
Gr16 Gridgraph 16× 16 256 480 0 16× 16 480
HGr12 Hypergridgraph 12× 12 144 0 121 12× 12 121
Suzanne Suzanne from blender 507 0 500 8× 8× 8
Rnd Random graph 60 120 0 16× 16
Peko Constructed VLSI 256 173 130 16× 16 ≤ 552
C1y VLSI 828 1749 0 16× 16
hsa05221 Homo sapiens genom 32 39 0 32× 32 46

Table 8.1.: Testbed

The construction of the instances Gr16, HGr12 is described in Appendix A.1.4. Su-
zanne is a standard 3d-model of the modeling software Blender and was created by
Willem-Paul van Overbruggen [4]. This instance is interesting, because it is very local,
not regular and contains only hyperedges. Peko was taken from paper [6]. We cut a
rectangle with bounds of [16]× [16] out of the first instance of first test-suite. The abbre-
viation stands for placement example with known optimal wire-length. Instance C1y is
a VLSI instance from paper [24]. This instance only has conventional edges and is rather
sparse, except for one vertex which has a very high degree. In the original paper it was
considered as a linear arrangement problem. Instance hsa05221 is an instance created
by a human genom which was solved optimally in [23].

8.2. Runtime

For most graphs the linear program is the computationally most intensive part of
the algorithm. We tested the following settings and inverted one parameter for each
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run.

LP-type normal sparse
pre-calculate lower bounds true true
post-optimize true not available
pre-calculate upper bounds false false
pre-calculate triagle inequalities false not available

Table 8.2.: Standard settings of the lp solvers

We included support for two LP-solvers: Cplex® [15], which is a productive tool issued
by IBM®, and Qsopt [2], which was written by Applegate, Cook, Dash and Mevenkamp
and is free to use for research purpose. The tests presented in this thesis were done
with Qsopt on an Intel® Core™ i5-7500 CPU at 3.40GHz with 16 GB ram. We used
openmp [7] to parallelize the Floyd-Warshall algorithm, Dijkstra from many roots and
the pessimistic tree approximation algorithm.

In Section 8.2 we can see that the optimizations indeed have a positive effect on the
runtime or even make some problems feasible. Furthermore, there is no clear winner
between the spreading LP and the sparse spreading LP.

LP-type Inverted Gr16 HGr12 Suzanne Rnd Peko C1y hsa05221

normal

normal 0.075 64.05 61.57 2.07 197.3 1289.8 0.0024
lower t-out t-out t-out 67.43 t-out t-out 1.1416
postopt 0.041 t-out t-out 7.88 t-out t-out 0.0018
upper 0.073 65.74 61.53 2.07 196.8 1286.2 0.0022
triangle 1.368 t-out m-limit 71.95 570.1 m-limit 0.0367

sparse
normal 0.011 31.84 19.12 0.60 7.7 t-out 0.0007
lower t-out 85.45 t-out 17.51 115.5 t-out 0.0275
upper 0.011 38.74 19.32 0.58 7.3 t-out 0.0010

Table 8.3.: Running times of LP-solver in seconds including the runtime of the oracle
and post-optimization for different graphs. The time-limit was set to 3600 seconds. In
each run we inverted one setting of Section 8.2.
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Figure 8.1.: Comparison of sparse and normal spreading LP for random graphs, on the
left-hand side with 64 vertices and a increasing number of edges. On the right-hand side
with

⌊
|V | · 3

2

⌋
= |E | and a lowpass over the data. We can see that for denser graphs

the normal LP-formulation is much faster, but for sparse graphs one can benefit from
the small number of variables.

8.3. Results

8.3.1. Spreading metric

In Section 8.3.1 we can see, how the LP behaves if we insert a few random edges to an
existing grid. As we might expect the grid would more disrupted by an optimal solution
of the spreading LP if we assign a higher weight to the random edges. An interesting
observation about the figure on the left-hand side is, that the longest random edge has
a very short length. The LP does not care about the position of the vertices in the
graph. Vertices at the border have less neighbors, which makes the spreading bounds
less restrictive.
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Edge

Length

1

2

3

4

Figure 8.2.: Visualization of the edge length of an optimal LP solution. We have a grid
with edge weight one on each edge. Furthermore, we have inserted some random edges
with variable edge weights. At the left-hand side with weight one quarter, in the middle
with weight one and at the right-hand side with weight four. For higher weights the lp
disrupts the original metric.

Gridgraphs are interesting tests, because they provide a very simple perfect embedding
(see Appendix A.1.4). Let d ∈ N be the dimension and b ∈ Nd be a boundary. Let
G = (V,H) be a grid-hypergraph with boundary b and hyperedges of dimension k for
k ≤ d. If we now want to embed G into [b1] × . . . × [bd] then the optimal embedding
is the embedding which is given by the construction. The value of this embedding is
k ·

∏
i∈[d]

(bi−1) in l1 and ∏
i∈[d]

(bi−1) in l∞.

8.3.2. Tree metric

In Fig. 8.3 we see the resulting tree metric of Algorithm 4, Algorithm 5 and Algorithm 6
for instance HGr12. The edges are plotted as faces, colored and labeled by their length
according to the tree metric. We can see that the probabilistic approach makes bad
decisions resulting in unnecessarily many edges being cut on high levels. The estimators
algorithm is the only algorithm that prevents the highest cut by choosing a vertex in
the middle. For smaller root radii it is better to begin with other vertices as we can see
in the lower middle.
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Probabilistic Estimators Growing

10.4 10.4 10.4 10.4 10.4 10.4 20.7 20.7 10.4 10.4 5.2

10.4 10.4 5.2 5.2 10.4 10.4 20.7 20.7 10.4 10.4 10.4

10.4 10.4 5.2 5.2 10.4 10.4 20.7 20.7 20.7 20.7 20.7

5.2 10.4 10.4 10.4 10.4 5.2 20.7 20.7 10.4 10.4 10.4

5.2 5.2 10.4 10.4 5.2 5.2 20.7 20.7 10.4 10.4 10.4

20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 10.4 10.4 5.2

20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 10.4 10.4 5.2

5.2 10.4 5.2 5.2 10.4 10.4 20.7 20.7 10.4 10.4 10.4

10.4 10.4 10.4 10.4 10.4 10.4 20.7 20.7 5.2 5.2 10.4

5.2 10.4 5.2 5.2 10.4 5.2 20.7 20.7 20.7 20.7 20.7

5.2 10.4 5.2 5.2 10.4 5.2 20.7 10.4 20.7 10.4 10.4

ρ = 10.4
4.5 4.5 9.0 9.0 4.5 4.5 18.0 4.5 4.5 9.0 4.5

4.5 9.0 9.0 9.0 9.0 4.5 18.0 4.5 4.5 9.0 9.0

9.0 9.0 4.5 4.5 9.0 9.0 18.0 9.0 9.0 9.0 4.5

9.0 9.0 4.5 4.5 9.0 9.0 18.0 4.5 9.0 4.5 4.5

4.5 9.0 9.0 9.0 9.0 4.5 18.0 18.0 18.0 18.0 18.0

4.5 4.5 9.0 9.0 4.5 4.5 18.0 4.5 9.0 4.5 4.5

18.0 18.0 18.0 18.0 18.0 18.0 18.0 9.0 9.0 9.0 4.5

4.5 9.0 4.5 4.5 18.0 4.5 9.0 4.5 4.5 9.0 9.0

9.0 9.0 4.5 4.5 18.0 9.0 9.0 4.5 4.5 9.0 9.0

4.5 9.0 9.0 9.0 18.0 4.5 9.0 9.0 9.0 9.0 4.5

4.5 4.5 9.0 4.5 18.0 4.5 4.5 9.0 9.0 4.5 4.5

ρ = 9.0
4.1 4.1 8.3 4.1 16.5 4.1 4.1 8.3 4.1 16.5 4.1

4.1 4.1 8.3 8.3 16.5 4.1 4.1 8.3 8.3 16.5 4.1

8.3 8.3 8.3 4.1 16.5 8.3 8.3 8.3 4.1 16.5 8.3

4.1 8.3 4.1 4.1 16.5 4.1 8.3 4.1 4.1 16.5 4.1

16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5

4.1 4.1 8.3 4.1 16.5 4.1 4.1 8.3 4.1 16.5 8.3

4.1 4.1 8.3 8.3 16.5 4.1 4.1 8.3 8.3 16.5 8.3

8.3 8.3 8.3 4.1 16.5 8.3 8.3 8.3 4.1 16.5 16.5

4.1 8.3 4.1 4.1 16.5 4.1 8.3 4.1 4.1 16.5 8.3

16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 4.1

4.1 4.1 8.3 4.1 16.5 8.3 8.3 16.5 8.3 4.1 4.1

ρ = 8.3

10.4 10.4 10.4 10.4 41.4 10.4 20.7 20.7 10.4 10.4 5.2

10.4 10.4 5.2 5.2 41.4 10.4 20.7 20.7 10.4 10.4 10.4

10.4 10.4 5.2 5.2 41.4 10.4 20.7 20.7 20.7 20.7 20.7

41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 10.4

5.2 5.2 10.4 10.4 5.2 5.2 20.7 20.7 10.4 41.4 10.4

20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 10.4 41.4 5.2

20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 10.4 41.4 5.2

5.2 10.4 5.2 5.2 10.4 10.4 20.7 20.7 10.4 41.4 10.4

10.4 10.4 10.4 10.4 10.4 10.4 20.7 20.7 5.2 41.4 10.4

5.2 10.4 5.2 5.2 10.4 5.2 20.7 20.7 20.7 41.4 20.7

5.2 10.4 5.2 5.2 10.4 5.2 20.7 10.4 20.7 41.4 10.4

ρ = 20.7
4.5 4.5 9.0 9.0 4.5 4.5 18.0 4.5 4.5 9.0 4.5

4.5 9.0 9.0 9.0 9.0 4.5 18.0 4.5 4.5 9.0 9.0

9.0 9.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 4.5

9.0 9.0 18.0 4.5 9.0 4.5 9.0 4.5 4.5 18.0 4.5

4.5 9.0 18.0 9.0 9.0 9.0 9.0 9.0 4.5 18.0 18.0

4.5 4.5 18.0 4.5 9.0 4.5 4.5 9.0 9.0 18.0 4.5

18.0 18.0 18.0 9.0 9.0 4.5 4.5 9.0 9.0 18.0 4.5

4.5 4.5 18.0 4.5 9.0 9.0 9.0 9.0 4.5 18.0 9.0

4.5 4.5 18.0 4.5 4.5 9.0 9.0 4.5 4.5 18.0 9.0

9.0 9.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 4.5

4.5 9.0 4.5 4.5 18.0 4.5 4.5 9.0 9.0 4.5 4.5

ρ = 18.0
8.3 33.0 4.1 4.1 16.5 4.1 4.1 8.3 4.1 16.5 4.1

8.3 33.0 4.1 4.1 16.5 4.1 4.1 8.3 8.3 16.5 4.1

16.5 33.0 8.3 8.3 16.5 8.3 8.3 8.3 4.1 16.5 8.3

33.0 33.0 16.5 16.5 16.5 4.1 8.3 4.1 4.1 16.5 16.5

4.1 33.0 4.1 4.1 16.5 16.5 16.5 16.5 16.5 16.5 4.1

4.1 33.0 4.1 4.1 8.3 8.3 16.5 4.1 4.1 8.3 4.1

8.3 33.0 8.3 8.3 8.3 4.1 16.5 4.1 4.1 8.3 8.3

16.5 33.0 4.1 8.3 4.1 4.1 16.5 8.3 8.3 8.3 4.1

8.3 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0

4.1 4.1 8.3 4.1 16.5 4.1 4.1 8.3 33.0 16.5 16.5

4.1 4.1 8.3 4.1 16.5 4.1 4.1 8.3 33.0 16.5 16.5

ρ = 16.5

Figure 8.3.: Comparison of Algorithm 4, Algorithm 5 and Algorithm 6 on instance
HGr12. All edges have length 1.5 in the solution of the spreading LP. ρ is the start-
radius of the tree metric algorithms.

For gridgraphs with growing dimension we could expect a logarithmic grow of the ra-
tio between our and the optimal solution value. Indeed this is the case as shown in
Section 8.3.2. Furthermore, the growing tree algorithm seems to result in the best em-
beddings, and the probabilistic in the worst. Thus, even though the bound for the grow-
ing tree metric algorithm is worse than the pessimistic estimators derandomization, we
should bear in mind that this only counts for a large number of edges.
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Figure 8.4.: Factor of Bounding-Box solution value to the optimum for an two dimen-
sional gridgraph with increasing size and hyperedges of dimension one.

In Table 8.4 we can see that the choice of start radius and algorithm has a great impact
on the volume of the closed tree. As we already mentioned by taking half the radius
these values would only decrease. Furthermore, as one might expect, the results of
the probabilistic tree algorithm are much worse than the others. The gap between the
estimators and the growing algorithm is too small to deduce that one is significantly
better.

In Table 8.5 we printed the linear arrangement value before we transformed the vertices
with the Hilbert curve. There is no direct connection to the closed tree volume visible.
Differences between the algorithms mostly cancel out. Moreover, we can see that the
tree optimization improves the results by a large factor. The difference between the
greedy and the enumerating optimization linear arrangement length is not very big. In
some runs the greedy optimization leads to better results. In Fig. 5.8 we can see an
example that proves the possibility of this behavior.

In Table 8.6 we see the bounding box value for the final embedding. Here the differences
become much smaller again. This could be expected, because with the Hilbert-curve the
length of an edge approximately transforms to the root d of its original length. We can
still see that the optimization improves the embedding. The choice of the tree algorithm
and rootradius only results in minor differences.
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9. Conclusion

We could show that the already known algorithm could be generalized to a bigger range of
problems and provide a derandomization for the tree metric algorithm. Furthermore, we
showed that one can find better constants for most approximation bounds, even though
the bound we reach in the end is far away from any useful embedding. For most graphs it
might be harder to find an embedding which is worse than the approximation bound than
to find one which fulfills it. Anyway, the results of our program are much better, but still
far away from any optimal solution and the runtime increases rapidly with larger graphs,
making it impractical for any productive application.

9.1. Open problems

As we saw, the Hilbert space-filling curve seems to be perfectly suited for the Minkowski
l∞-metric but not for the l1 metric. The reason is that it recursively subdivides l∞ cubes.
The question is if we could find curves which are more local in the sense of the l1 metric
and by this get rid of the factor d. The first approach may be to pack diamond bounded
shapes together, but they unfortunately do not fit together in a way that we can build
a bigger diamond shape out of some small shapes without leaving out points. Even so
this might lead to a solution which scales better in higher dimensions. A possible curve
could consist of diamond shaped grids packed together, leaving out some gaps, and then
jump from adjacent points into these gaps.

Another problem, which is also connected to the embedding curve, is if we could consider
domains which have more complex shapes. For simple shapes one might put together the
domain by a few big, equal sized cubes, giving them an ordering and using Algorithm 8
to get the desired curve. But depending on the domain the constant of the bound
would get worse and if we have a domain which is more complex we cannot use this
approach.
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Index
2-hierarchically closed-well-separated, 26
2-hierarchically well-separated, 26

adjacent, 8
ancestor, 25

bit-wise operations, 46
bit-wise representation, 45
blockages, 12
bounding box length, 11

child, 25
closed ball, 9
cluster function, 25
clustering, 48
complete, 8
connected, 9
Cube-Bounded, 12
Cuboid-Bounded, 12
cut, 8

diameter, 9
distance function, 8
domain, 12

edge costs, 9
edge volume, 9

fan-out, 25
full, 25

graph metric, 9
grid-hypergraph, 80

hyperedges, 8
hypergraph, 8

index set, 7
induced subgraph, 8

induced tree metric, 27

leaves, 25
length, 9
linear inequality, 13

metric closure, 10

optimal embedded set, 16

partial permutation, 8
path, 9
permutation, 8

Rectangle-Bounded, 12
released, 34
root, 25

shortest path, 10
sparse spreading lp, 19
spreading bound, 14
spreading lp, 17
star, 8
symmetric group, 8

terminals, 12
torus-hypergraph, 80
tree, 25

vertices, 8
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INDEX

z
Variable Explanation Definition Type
b Cuboid boundary 3.1.6 Vector
B Blockages 3.1.8 Set
c Edge cost function 2.2.10 Function
d Dimension Natural number
d Distance function 2.2.7 Function
E Edges 2.2.1 Set
G Graph 2.2.1 Tuple
H Hyperedges 2.2.1 Set
V Vertices 2.2.1 Set
ρ Root radius Real positive number
P Path 2.2.12 Triple
π Graph embedding 3.1.6 Function
π̃ Linear embedding 5.5 Function
q Hilbert injection Function
Q Domain 3.1.6 Set
sb Spreading bound 4.2.3 Function
T Tree 5.0.1 Triple
τ Vertex permutation Function
T Terminals 3.1.9 Set
w Edge volume 2.2.10 Function
Λ Vertex clustering 5.0.6 Function

Table 9.1.: List of the variables which name the samee thing over the thesis
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A. Appendix

A.1. Program

In this chapter we describe the usage of the program which was written as a part of this
thesis. We will describe the most important parameters, commands, graph generators
and the input and output.

A.1.1. Parameters

Performance

Variable Type Default Explanation
lp_tr_sc_factor double 70 Weight factor for triangle inequalities
lp_hide_empty_cols bool false Hide inactive cols from the solver
lp_ineq_eps double 0.00001 Minimum violation of inequalities
lp_precalc_tr bool false Precalculate triangle inequalities, see

Section 4.3.4
lp_precalc_lb bool true Use lower bounds, see Section 4.3.3
lp_precalc_ub bool false Use upper bounds, see Section 4.3.6
lp_rand_ineq bool true Randomize choice of inequalities
lp_remove_sl_factor double 0.1 Remove inequalities after they have

been slacked factor times resolves times
in a row

lp_postopt bool true Use Postoptimization, see Section 4.3.2
lp_type string normal Lp-type, possible values are normal

and sparse, see Definition 4.2.9 and
Definition 4.3.1)

lp_solver string Which lp-solver should be used possible
values are qsopt and cplex

num_threads integer 0 Maximum number of parallel threads

Table A.1.: The most important program parameters
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Tree algorithm

Variable Type Default Explanation
optimize_tree string greedy Which tree optimization should be

used, possible values are none, greedy,
enumerate, see Section 5.5

tree_algorithm string estimators Algorithm which approximates the
tree, possible values are growing, prob-
abilistic, estimators see Chapter 5

tree_halfradius bool true Half tree root-radius, see Remark 5.2.4
tree_rootradius double NaN Overwrites the choice of the rootradius
tree_permutation integer list Overwrites the choice of the permuta-

tion

Table A.2.: Most important algorithm parameters

Instance

Variable Type Default Explanation
size integer list The size of the cuboid in which the

graph should be embedded
lp_spreading_bound string l1 Possible values are l1 and linfty, see

Definition 4.2.3.

Table A.3.: Problem Instance Parameters

Logging

Variable Type Default Explanation
loglevel integer 0 Logging increases with higher values
output_dir string ./output/ Directory for all output files
plot_graph_flat bool false Print graph as a matrix. Use with pa-

tience, the file size is in Θ(|V | · |H |)
plot_tikz bool true Print images which can be used in latex.
plot_svg bool true Write Scalable Vector Graphic Plots, see

[8]
plot_obj bool true Write a Wavefront plot of the embedding,

see [20]
clear_output_dir bool false Clear output directiory at startup

Table A.4.: Logging parameters
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A.1.2. Input

Command Argument Explanation
gridgraph integer list See Appendix A.1.4
torusgraph integer list See Appendix A.1.4
gridhypergraph integer list bool list See Appendix A.1.4
torushypergraph integer list bool list See Appendix A.1.4
randgraph integer integer
readbookshelfgraph auxilary-file See [21]
readtgfgraph tgf-file See [28]
readobjgraph obj-file See [20]
readvertexpositions vertex position listTfile See Appendix A.2.3

Table A.5.: File input commands

Trivial graph file-format

A definition of the format can be found in [28]. Graphs in this format can be loaded
with the command readtgfgraph.

Bookshelf graph

Bookshelf graphs can be read with the command readbookshelfgraph <Auxiliary-File>.
A description of the file format can be found on [21]. If there is a placement file in the
same directory this is read as plot positions.

Wavefront file-format

A description of the file format can be found in the book [20]

A.1.3. Output

All output of the program is written to the folder defined in the option output_dir. The
most important file is result.txt. The positions of the embedding are written into this
file as a vertex position list (see Appendix A.2.3). Furthermore, information about the
results and several plots can be found in the file log.html.
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Debugging information

Variable Explanation
Oracle Calls Number of calls of the lp oracle
Lp inequalities Number of inequalities at termination
Postopt calls Number of calls of the post-optimization
LP variables Number of variables of the LP solver at termination
LP variables real Number of variables of the LP at termination

Table A.6.: Debugging information

Solution information

Variable Explanation
Closed Tree Volume The volume of the tree according to Definition 5.1.2
BBOX l1 value The bounding box value in the l1 norm
BBOX linf value The bounding box value in the l∞ norm

Table A.7.: Solution information

A.1.4. Graph generators

Gridgraph

Let d ∈ N be the dimension and b ∈ Zd be the cuboid boundaries. Then we first define
the vertices:

V =
d×
i=1

[bi]

We define the edges of dimension k ∈ {0, . . . , d} as

Hk := {h ⊆ V : BBOX∞(h) = 1 ∧ |h| = 2k}

We say G is a grid-hypergraph with boundary b and hyperegdes of dimension k if
G = (V,Hk).

Torusgraph

Let d ∈ N be the dimension and b ∈ Zd be the cuboid boundaries. Then we first define
the vertices:

V =
d×
i=1

[bi]
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We define the edges of dimension k ∈ {0, . . . , d} as:

Hk := {h ⊆ V : ∃v ∈ V such that BBOX∞(h+ vmod b) = 1 ∧ |h| = 2k}

We say that G is a torus-hypergraph with boundary b and hyperegdes of dimension
k if G = (V,Hk).

A.2. File formats

A.2.1. Edge list

In the first line the number of vertices is stated, followed by lines which define the edges.
The vertices are numbered from 0 to |V | − 1

<number of vertices>
<vertex> ... <vertex>
...
<vertex> ... <vertex>

Figure A.1.: Edge list

A.2.2. Weighted edge list

In the first line the number of vertices is stated, followed by lines which define the
edges. The vertices are numbered from 0 to |V | − 1. The weights must take values in
R>0.

<number of vertices>
<weight> <vertex> ... <vertex>
...
<weight> <vertex> ... <vertex>

Figure A.2.: Weighted edge list
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A.2.3. Vertex position list

Each line defines a position of a vertex.

<coordinate> ... <coordinate>
...
<coordinate> ... <coordinate>

Figure A.3.: Vertex position list.
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